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Abstract— Learning abstractions directly from data is a
core challenge in robotics. Humans naturally operate at an
abstract level, reasoning over high-level subgoals while delegating
execution to low-level motor skills—an ability that enables
efficient problem solving in complex environments. In robotics,
abstractions and hierarchical reasoning have long been central
to planning, yet they are typically hand-engineered, demanding
significant human effort and limiting scalability. Automating
the discovery of useful abstractions directly from visual data
would make planning frameworks more scalable and more
applicable to real-world robotic domains. In this work, we focus
on rearrangement tasks where the state is represented with
raw images, and propose a method to induce discrete, graph-
structured abstractions by combining structural constraints with
an attention-guided visual distance. Our approach leverages
the inherent bipartite structure of rearrangement problems,
integrating structural constraints and visual embeddings into a
unified framework. This enables the autonomous discovery of
abstractions from vision alone, which can subsequently support
high-level planning. We evaluate our method on two rearrange-
ment tasks in simulation and show that it consistently identifies
meaningful abstractions that facilitate effective planning and
outperform existing approaches.

I. INTRODUCTION
A central challenge in artificial intelligence and robotics is

enabling agents to reason at an abstract, goal-directed level
while acting in a continuous, high-dimensional sensorimotor
world. Humans naturally bridge this gap [1]: when packing a
lunch, one thinks in terms of subgoals—open the backpack,
place the lunch inside, zip it closed—rather than orchestrating
every joint movement. This ability to rely on abstract rea-
soning while delegating execution to low-level motor skills
is key to human intelligence. In contrast, robots are often
forced to operate directly on raw observations (e.g., images)
and low-level controls, making even seemingly simple tasks
computationally expensive, brittle, and hard to generalize.
Bridging symbolic planning and sensorimotor control thus
remains a fundamental obstacle to building autonomous and
adaptable robots [2].

Within robotics, task and motion planning (TAMP) frame-
works have long exploited symbolic abstractions to de-
compose long-horizon problems into tractable subproblems
[3]. These approaches integrate high-level task reasoning
with geometric motion planning and have shown increased
generalizability and long-horizon performance [4], [5] in
robotic manipulation. However, their applicability is limited
because they require manually specified abstractions and
precise world models, which are rarely available in real-world
settings.

In this work, we focus on learning abstractions for visual
rearrangement problems, as illustrated in Fig. 1. The robot

Position 2 Position 3

Pick 1

 Place 1

Pick  Place 

Pos 1 Pos 2

Pos 3

Pos 1

Pos 3

Pos 2

Pos 1 Pos 2

Pos 3

C1

C2

C3

C4

C5

C6

Fig. 1: From images and actions to an abstract task graph. Left: example
RGB observations o from the execution trace D. Right: the induced bipartite
transition graph over learned clusters, split by role into pick (left of dotted line)
and place (right). Clusters are obtained by constrained graph coloring guided
by attention-weighted visual distance; edges are action-labeled transitions
observed in D.

is provided with execution traces consisting of raw visual
observations paired with high-level action labels correspond-
ing to manipulation primitives such as pick and place.
Our objective is to induce an abstract transition graph Fig. 1
(right), whose nodes represent equivalence classes of task
indistinguishable states and whose edges correspond to action-
labeled transitions. Such a graph constitutes a minimal and
sufficient representation [6] for computing task satisfying
high-level action plans.

Prior work on visual task planning [7] typically learns a
latent representation of images [8], [9] and then performs
clustering in the latent space to induce an abstract task graph.
However, abstract graphs that encode real world tasks are
subject to structural constraints. For example, there must be
at most one high-level action between any pair of states,
and states connected by an action must belong to distinct
abstract nodes. Existing methods do not strictly enforce these
constraints during representation learning, often producing
graphs that violate them.

To overcome this limitation, we explicitly encode general
hard structural constraints that any rearrangement abstraction
must satisfy and restrict the learned graph to be feasible under
these rules. Since these constraints alone underdetermine the
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abstraction (an underdetermined problem), we additionally
leverage an unsupervised latent-space similarity metric to
guide graph discovery, yielding abstractions that are both
structurally valid and visually coherent.

We evaluate our method on two rearrangement manipula-
tion tasks [10]. Assuming minimal prior knowledge—only
access to a generic pick-and-place skill—we demonstrate
that the proposed framework can autonomously construct
higher-level abstractions that enable planning directly from
raw images.

II. RELATED WORK

In robotics, abstractions can provide compact, interpretable
models that reduce the complexity of raw sensorimotor data,
making long-horizon reasoning and planning both tractable
and generalizable across tasks [6], [11]. Learning such
abstractions directly from data remains an open challenge, and
has motivated learning different abstraction representations.

Higher-order abstractions: The early foundational work
of [6] sought to induce STRIPS-style symbolic rules from
experience, but assumed object-centric state descriptions and
perfect knowledge of action executability. More recently, [12]
extended this idea to learning expressive PDDL represen-
tations capable of capturing first-order logic, though their
method likewise required object-centric states and known
operator dynamics. In contrast, the work of [13] pioneered
learning STRIPS-style abstractions directly from raw images,
removing the need for predefined object models. However,
their framework did not leverage action labels, which are
readily available in robotics domains. Our approach builds
on this direction by combining visual information with
action-labeled transitions, enabling the discovery of structured
abstractions tailored to rearrangement tasks.

Lower-order abstractions: At the opposite end of the
spectrum, the simplest form of abstraction over a real world
continuous domain is a flat graph representation, where nodes
correspond to discrete states and edges encode discrete action
transitions. Such graphs have been explored in robotics. Two
main families of methods can be distinguished. The first
follows a two-stage pipeline: learn a representation of states
from sensory data and then cluster embeddings to generate a
connectivity graph, with edges defined via execution traces
or latent distances [8], [14]–[16]. The second jointly learns
state embeddings together with forward or inverse dynamics
models, which can encode some form of forward dynamics
consistency, of the resulting graphs [9], [13]. While these ap-
proaches have shown promise in producing visually grounded
graph abstractions, they provide no guarantees that the learned
abstractions respect the underlying action constraints. Our
work addresses these limitations by incorporating structural
constraints into the graph induction process, while grounding
state similarity directly in visual data.

Rearrangement Planning: Rearrangement of objects has
been a long-standing focus in robotics [10]. Most existing
approaches assume access to object-centric representations,
either by relying on known object positions [17], performing
object segmentation in the scene [18], or establishing image

correspondences across views. While effective in scaling to
several objects [17], these methods all depend on explicit
object models. In this work, we address rearrangement under
a weaker assumption: the robot is equipped only with high-
level pick-and-place actions, and perceives the world solely
through raw images. We do not assume access to object
identities, poses, or segmentation masks. Instead, our goal is
to recover a relevant abstraction in the form of a symbolic
graph, discovered in a fully unsupervised manner from visual
observations and action-labeled transitions.

III. PROBLEM FORMULATION AND NOTATION

A. Problem Formulation

We begin by defining a planning problem, and then
specialize it to the case of rearrangement tasks, followed
by the vision-based setting considered in this work.

Classical Planning Problem Let S be a finite set of
discrete states, and let A be a finite set of discrete actions.
The environment is governed by a deterministic transition
function T : S ×A → S, which maps a state s ∈ S and an
action a ∈ A to a successor state s′ = T (s, a). Given a start
state sstart ∈ S and a goal state sgoal ∈ S, the objective is to
compute a plan, i.e., a sequence of actions π = (a1, . . . , aT )
with at ∈ A, such that executing π transitions the system
from sstart to sgoal under T .

Rearrangement Planning Problem A rearrangement
problem can be viewed as a special case of the classical
planning formulation with the additional structure:

1) The action set consists of high-level manipulation
primitives, specifically pick and place actions, i.e., A =
{picki,placei}, where the index i distinguishes
different pick/place actions, as would be the case if
picking or placing in different regions.

2) The transition structure is bipartite: every pick action
must be followed by a place (and vice-versa), and
no two consecutive actions of the same type are valid.

In this work we assume that object identity is irrelevant
for planning. Concretely, we treat all objects as interchange-
able (permutation-invariant), and use object-agnostic action
templates A = {picki,placei} rather than object-indexed
actions. This models tasks where only the spatial arrangement
matters (e.g., “some fruit here, some fruit there”), not which
specific instance occupies a location.

If object identities must be respected, the action set can
be expanded to object-indexed labels,

Ainst =
{
pickobj

i , placeobj
i

}
.

Visual Rearrangement Planning Problem
In the visual rearrangement setting, the robot does not ob-

serve the discrete state space S directly. Instead, it perceives
the world through raw visual observations o ∈ O. We assume
that each observation is generated from the underlying state
via an (unknown) observation function ϕ : S → O, such that
o = ϕ(s). Thus, while every observation corresponds to some
state s ∈ S, the mapping ϕ, the discrete state space S, and
the transition function T are considered unknown. Instead



of direct access to the task model, we assume the robot is
provided with a dataset of observed execution traces:

D =
{
(o0, a0, o1), (o1, a1, o2), . . . , (oT−1, aT−1, oT )

}
,

where each ot is a visual observation and at is the
corresponding high-level action applied between successive
observations.

Concretely, we define the visual rearrangement planning
problem as: Given a start observation ostart = ϕ(sstart) and
a goal observation ogoal = ϕ(sgoal), find a sequence of high-
level actions π = (a1, . . . , aT ) that transitions the system
from sstart to sgoal.

IV. APPROACH

To be able to produce a feasible high-level plan, our method
infers an action-labeled, bipartite transition graph from the
observation–action trace D,

Ĝ = (V̂pick ∪ V̂place, Ê),

together with an assignment map f : O→V̂ that sends any
image o ∈ O to an abstract state f(o). In essence, every
vertex v corresponds to a discrete abstract state s ∈ S and
every edge corresponds to a discrete action a ∈ A.

Bipartiteness ensures the pick↔place alternation:
edges always cross roles (pick→place or place→pick); there
are no pick→pick or place→place edges.

At deployment, f is implemented by a classifier on fixed
visual embeddings trained with the cluster labels discovered
during learning; thus f approximates the inverse observation
map up to abstraction: f ≈ ϕ−1.

Given (ostart, ogoal), we compute (f(ostart), f(ogoal)) and run
a standard graph search (e.g., BFS) in Ĝ to recover a high-level
action sequence. To learn the graph from the execution trace
D, we follow two principles:

1) enforce the structural constraints in Sec. V-A;
2) minimize the intra-cluster visual distance in Sec. V-B.

V. GRAPH CONSTRAINTS AND VISUAL DISTANCE

A. Structural Constraints

We learn Ĝ under three structural constraints:
(i) Bipartiteness. Edges always cross roles (pick→place or
place→pick); no pick→pick or place→place edges can exist.
(ii) Action-uniqueness (Exactly-One). Rearrangement
graphs only have one unique action between two states. This
constraint is shown in Fig. 2:

∀v ∈ V̂, ∀a ∈ A :
∣∣{ v′ : (v, a, v′) ∈ Ê }∣∣ ≤ 1. (1)

(Equivalently: between any ordered pair (u, v) there is at
most one action label; cf. Fig. 2.)
(iii) Bounded action variety. As an optional structural prior,
a state supports only a small set of distinct outgoing action
labels:

∀v ∈ V̂ :
∣∣{ a : ∃ v′ (v, a, v′) ∈ Ê }

∣∣ ≤ Kcap. (2)

We treat Kcap as unknown and select it from a small
discrete sweep. We found finite caps helpful in practice for
producing compact, well-connected graphs.
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Fig. 2: Action–uniqueness constraint: Each node is a learned abstract state.
Top: invalid—between the same two clusters we observe two different actions
(e.g., p1 and p2); this violates our rule that there must be a single action
between any fixed pair of abstract states. Bottom: valid—only one action
connects the pair; any second action must lead to a different destination
cluster.

These constraints create an underdetermined problem with
many feasible graphs. To select among them, we integrate
an attention-guided visual distance (Sec. V-B).

B. Attention-Guided Visual Distance

To guide the coloring search in a completely unsupervised
manner, we require a visual distance that favors grouping
images which are indistinguishable for the task, while being
insensitive to superficial appearance changes and tolerant to
minor alignment jitter.

Attention-derived spatial weights.: Each RGB observa-
tion o is processed by a frozen DINO-v2 ViT-G/14 encoder.
From the final transformer block we take the [CLS]→patch at-
tention and normalize it into a non-negative spatial probability
map M(o) over the image grid. To suppress background, we
keep the largest connected components in this map and lightly
smooth/renormalize so that

∑
ij Mij(o) = 1. The result is a

soft spatial weighting that highlights the task-relevant region
without relying on object identities or semantics.

Given two maps M(oi) and M(oj) supported on a
common pixel grid with ground cost Cuv = ∥xu − xv∥2
(Euclidean distance between pixel centers), we compare
them via the entropically regularized optimal-transport cost



OTε(p, q) and its debiased Sinkhorn divergence:

Sε(p, q) = OTε(p, q)− 1
2OTε(p, p)− 1

2OTε(q, q). (3)

dvis(oi, oj) = Sε

(
M(oi),M(oj)

)
. (4)

where p, q are the vectorized maps.1 Intuitively, dvis measures
how much spatial “mass” must move to align the attention
patterns. Two images that place the same item (or a visually
different item, e.g., strawberry vs. lemon) in the same region
yield small cost (the purple states in Fig. 1 are similar even
though the object moved); moving mass across regions incurs
a larger cost. This aligns well with rearrangement abstractions
and the bipartite structure in Fig. 3.

We call dvis the attention-guided OT distance. For col-
oring we convert distances to an affinity Kvis(oi, oj) =
exp(−dvis(oi, oj)/τ) and score a partition C by the average
intra-cluster visual distance

V(C) =
∑
C∈C

1

|C|(|C| − 1)

∑
o̸=o′∈C

dvis(o, o
′), (5)

where lower is better. We refer to V as the intra-cluster visual
distance (V).

VI. METHODOLOGY

A naive strategy to generate a structurally feasible graph
would be to enumerate every partition of the pick images into
kpick clusters and every partition of the place images into kplace
clusters, keep only those that satisfy the constraints, and then
select the visually most coherent solution (Sec. V-B). Even
for the Fruit domains with 15 pick and 15 place images and
just kpick = kplace = 3, the number of partitions explodes:
the count per side is the Stirling number of the second kind
S(n, k), so the joint search size is

S(15, 3)2 = (2,375,101)2 ≈ 5.6× 1012

before checking constraints or evaluating visual scores. If
k were unknown, the space becomes all set partitions: the
Bell number B15 = 1.38 × 109 per side, yielding B2

15 ≈
1.9× 1018 candidates. This is clearly intractable. Instead of
brute force, we solve a constraint-guided clustering problem
via graph coloring (Sec. VI-A), where feasibility is enforced
by construction and vision guides choices among feasible
options.

A. Vision-Guided Graph Coloring

We treat state discovery as coloring two role-indexed sets
of observations—pick and place—subject to the structural
constraints (1)–(2). Fig. 3 walks through the four stages of
our procedure.

1We downsample the maps before OT for efficiency and cache all pairwise
distances.

Stage 1: Vision-only seeding of the pick side (Fig. 3,
top-left): We seed the pick partition using visual affinity (high
Kvis) alone. Concretely, we rank uncolored pick images by
visual centrality (highest mean affinity Kvis to the remainder),
start a new color with the current seed, and then grow
that color greedily by repeatedly adding the unassigned
image with minimum dvis to the cluster—provided the mean
intra-cluster distance does not increase. This yields compact,
visually coherent seeds without yet checking relational con-
straints. The number of colors is bounded by kpick.

Stage 2: Place-side DSATUR under constraints (Fig. 3,
top-middle): Holding the Stage-1 pick partition fixed, we
build the place conflict graph: two place images are adjacent
if putting them in the same cluster would violate either
constraint (1)–(2) when combined with the already colored
pick partition and the observed transitions (ot, at, ot+1) in
D. We then color this graph with at most kplace colors using
DSATUR [19].

• Ordering. At each step we select the place image with
the highest saturation degree (most distinct colors seen
among its neighbors), breaking ties by total degree.

• Vision-guided color choice. Among feasible colors, we
choose the one with the highest mean Kvis affinity to
its current members, thereby integrating vision into the
combinatorial step.

Stage 3: Pick-side DSATUR with place frozen (Fig. 3,
bottom–middle): After obtaining a feasible coloring for the
place side in Stage 2, we discard the greedy seeds on the pick
side from Stage 1 (i.e., uncolor all pick nodes) and recolor
pick from scratch while holding the place partition fixed.
Concretely, we build the pick conflict graph: two pick images
are adjacent if merging them into the same cluster would
violate either structural constraint (1)–(2) when combined
with the frozen place partition and the observed transitions
(ot, at, ot+1) ∈ D. We then color this graph with at most kpick
colors using DSATUR, using the same policy as in Stage 2:
After this stage, both sides have been colored against each
other and the resulting action-labeled bipartite graph satisfies
the constraints by construction.

Feasibility and backtracking: When testing an assign-
ment v→ c during DSATUR (Stages 2–3), we maintain a
tiny action–successor table Λ that records, for each cluster c
and action a, the unique successor Λ(c, a) already fixed by
earlier decisions. An assignment is feasible iff:

1) No neighbor conflict. No neighbor of v in the current
role’s conflict graph already has color c.

2) Exactly-One. For every observed transition (v, a, v′)
whose opposite-role partner v′ is already colored, either
Λ(c, a) is unset or equals the color of v′.

3) Out-degree cap. Adding v to c would keep the number
of distinct outgoing labels from c ≤ Kcap.

If several colors are feasible we use the vision-guided rule
above. If no existing color is feasible and we have not yet
used kpick/kplace colors, we open a new color. Otherwise we
backtrack to the most recent undecided vertex and try its next
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Fig. 3: Vision–guided graph coloring. Stage 1 (top-left): seed the pick side by greedy, vision-only grouping using Kvis (no relational checks). Stage 2
(top–middle): build the place conflict graph whose edges indicate merges that would violate Exactly-One or exceed Kcap; color with DSATUR, choosing
among admissible colors by visual affinity. Stage 3 (bottom–middle): freeze place and recolor the pick side the same way; the bipartite graph now satisfies
the constraints. Stage 4 (bottom-left): local refinement (1-opt, 2-opt, Kempe chains) preserves feasibility and reduces the intra-cluster distance, producing
the final learned graph.

feasible color. In practice, DSATUR’s “most-constrained-first”
ordering keeps backtracks shallow.

Stage 4: Local refinement (both roles) (Fig. 3, bottom-
left): Starting from the first feasible coloring obtained from
Stage 3, we run a short alternating local search that refines
both sides. We freeze one role(pick or place) and improve
the other by proposing only admissible edits: (i) 1-opt (move
a single image between clusters), (ii) 2-opt (swap two images
across clusters), and (iii) two-color Kempe flips (swap colors
along a connected two-color component to free capacity). An
edit is accepted iff (a) all conflict edges remain satisfied,
(b) the action–successor table Λ remains consistent with
Exactly-One, (c) the out-degree cap Kcap is not violated, and
(d) the role’s visual score V strictly decreases.

After any accepted edit on the active role (say, place), we
immediately re-solve the opposite role once with DSATUR
(re-color pick against the updated place partition) to keep the
two sides synchronized and feasibility intact (Fig. 3, Stage 4).
We then switch roles and repeat. We alternate place ↔ pick
for N rounds (we use N=6) or stop early when no admissible
edit improves V . In practice, one to three alternations suffice.

Algorithm 1: Vision-guided constrained coloring with
grid sweep (see Fig. 4).

Input: trace D, role labels, Kcap, grid
K = {(kpick, kplace)}

Output: partition C⋆ and graph Ĝ⋆
1 foreach (kpick, kplace) ∈ K do
2 S ← COLORWITHDSATUR(D, kpick, kplace) if

S = ∅ then
3 mark cell infeasible; continue

4 foreach partition C ∈ S do
5 compute V(C) with dvis; keep the argminC V

6 Pick C⋆ by: feasibility ≻ minimal kpick+kplace ≻
minimal V; return C⋆ and its Ĝ⋆.

B. Learned Graph Selection

Selection across (kpick, kplace): We repeat the four-stage
procedure above (as outlined in algorithm 1) across a small
grid of (kpick, kplace). For each grid cell we keep the best
feasible partition (lowest intra-cluster visual distance V) and
then select the final abstraction by (i) feasibility, (ii) fewest
total clusters kpick+kplace, and (iii) minimum V to break ties.
The resulting sweep is summarized in Fig. 4; the selected



graph is the one we use for planning and evaluation.

C. Few-Shot Visual–to–State Classification

To localize any new observation onew on the graph, we
need to train a vision classifier that maps an RGB image to a
node in V̂ , in essence learning the inverse of the observation
function ϕ−1.

Label bootstrapping: Labels come directly from the
learned partition (Sec. VI-A). Let V̂ = V̂pick ∪ V̂place and fix
an index map idx : V̂ → {1, . . . ,K} with K = kpick + kplace
(e.g., all pick nodes first, followed by place nodes). For every
training image oi, the classifier label is the index of its learned
state,

yi := idx
(
f(oi)

)
∈ {1, . . . ,K}.

Thus Dcls = {(oi, yi)} requires no extra annotation and is
fully consistent with the abstraction.

Model: Because each node has few labeled images, we
adopt a few-shot regimen: a DINO-v2 ViT-G/14 encoder
is used to extract features Φ(o) ∈ Rd, while only the last
transformer block is unfrozen. On top we place a cosine
classifier with temperature γ:

zk(o) = 1
γ

w⊤
k Φ(o)

∥wk∥ ∥Φ(o)∥
, ŷ(o) = argmax

k
zk(o),

(6)
where wk ∈ Rd is the learnable vector for node k. We
optimize the class weights and the last transformer block
with cross-entropy over the logits {zk(oi)}.

Training protocol: Classes (nodes) are few and imbal-
anced, so we use stratified K-fold cross-validation (default
K=5) to choose hyperparameters and guard against overfit-
ting. Within each fold we train with Adam using cosine-head
LR 10−3, last-block LR 10−4, weight decay 10−4, batch size
32, and early stopping (patience 10, max 100 epochs). We
apply light augmentation (random resized crop, horizontal
flip, mild color jitter) to improve robustness to appearance
changes (e.g., color or category swaps at the same placement).
After model selection, we retrain on all (oi, yi) and deploy the
classifier. At inference, a single forward pass maps a novel
observation onew to a node index ŷ(onew) ∈ {1, . . . ,K} on
Ĝ, which is then used for high-level planning.

Defaults: Unless stated otherwise, we set γ=0.1 and
keep only the last ViT block trainable; all other encoder
weights remain frozen.

VII. EXPERIMENTS AND RESULTS

A. Experimental Setup

Simulator and data.: We evaluate in PyBullet [20] on
table-top rearrangement tasks. Let O denote RGB observa-
tions and A the discrete, high-level action labels (pick/place
variants). Each dataset consists of observation–action transi-
tions

D = {(ot, at, ot+1)},

where at ∈ A and the role alternates (pick → place → pick).
A key property of our scenes is that placements are continuous
within a target region: the workspace is partitioned into a
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Fig. 4: Grid sweep. Evaluating (kpick, kplace) with Algorithm 1. Lower V
is better. For Fruit (homogeneous), the best is (3, 3). Blank cells indicate
no solution was found for that pair.

small set of regions, and when an object is placed into a
region its planar pose (x, y) is sampled uniformly inside a
fixed-radius disk around that region’s nominal center. Thus
many distinct images can correspond to the same abstract
state.

Environments:

• Fruit rearrangement (hom./het.). Two object slots
and three placement regions (e.g., two corners and
center); camera is fixed. We instantiate a homogeneous
variant (two identical fruits) and a heterogeneous variant
(e.g., strawberry vs. lemon). All valid pick–place moves
between regions are permitted (six unique action labels).
Dataset size: 30 observations.

• Blocks World (2 blocks). Two blocks and three posi-
tions (left/center/right) with stacking/unstacking enabled.
We use 12 unique high-level actions in this domain. To
test appearance robustness, we swap block colors across
runs (geometry and viewpoints held fixed). Dataset size:
45 observations.

• Blocks World (3 blocks). Three blocks over the same
three positions, yielding a larger configuration space with
stacking. We use 18 unique high-level actions. Color
swaps are likewise applied only in this Blocks World
setting. Dataset size: 150 observations.

Baselines. We evaluate two clustering baselines that follow
the spirit of [9], [21], where a representation of observa-
tions is learned, and then a graph is created based on the
learned latent distances. Both baselines operate on the same
attention-guided visual embeddings described in Sec. V-B and
induce abstract-graph edges by mapping observed transitions
(ot, at, ot+1) to cluster indices.

Pre-partitioning (implicit contrast). To mimic the con-
trastive separation between action roles, we pre-partition the



TABLE I: Optimal Path (Opt↑), Intra-cluster visual distance (V ↓), and Transitions (Trans↑).

Method
Fruit (Hom) Fruit (Het) Blocks (2) Blocks (3)

Opt AnyPath Trans V Opt AnyPath Trans V Opt AnyPath Trans V Opt AnyPath Trans V

HDBSCAN 6% 10% 74.5% 0.0653 4% 4% 74.5% 0.0942 8% 8% 76.5% 0.047 2% 2% 80% 0.0869
Agglomerative 37.5% 37.5% 50.00% 0.1351 35.0% 35.0% 37.5% 0.1502 33% 33% 33% 0.0839 6% 6% 50% 0.1206
Ours 86% 100% 88% 0.077 82% 100% 83.33% 0.08 66% 93% 80% 0.091 45% 81% 45% 0.098

TABLE II: Per-environment class counts and classifier accuracy.

Environment # Classes Classifier Accuracy (%)

Fruit (Hom) 6 88.9
Fruit (Het) 6 88.9
Blocks (2) 9 72.2
Blocks (3) 16 62.2

observations into pick and place subsets using the role
indicated by the action sequence (pick → place → pick).
Clustering is performed separately within each subset; this
prevents cross-role merging and acts as an implicit contrastive
constraint.

Agglomerative. We run hierarchical agglomerative clus-
tering on the role-specific embeddings and select the linkage
and cut level via a small sweep to balance over- and
under-segmentation (targeting a cluster count comparable to
the domain’s state budget). No metric details are assumed
beyond a fixed feature-space affinity on the embeddings. After
clustering, edges in the abstract graph are induced directly
from (ot, at, ot+1) by mapping endpoints to their clusters.

HDBSCAN. [22] We apply hierarchical density-based
clustering to the same role-specific embeddings. We tune
min cluster size and min samples per dataset to
control granularity, and (when needed) assign outliers to the
nearest existing cluster in embedding space to obtain a total
labeling consistent with graph induction from transitions.

Difference from ours.: All methods use the same atten-
tion–guided features. Baselines cluster within pre-partitioned
pick/place subsets and only then induce edges from transi-
tions. In contrast, our approach integrates role information
during coloring via the conflict graphs and enforces con-
straints at assignment time; visual affinity is used only to
choose among feasible colorings. This yields graphs that are
structurally valid by construction.

B. Evaluation Metrics

We evaluate along two axes: (i) planning success on the
learned abstraction and (ii) intra-cluster visual distance of the
clusters.

a) Planning Metrics: For each environment we sample
K=500 start–goal pairs (c0, cG) from distinct nodes of the
learned graph Ĝ. For each pair, we (1) enumerate all shortest
paths with BFS; if no path is found, we run DFS to search
for non-shortest alternatives; (2) deem a path valid only if its
entire action sequence executes in the ground-truth transition
graph G⋆ (one invalid step ⇒ failure). We report:

• OptPath%: fraction of pairs for which at least one BFS
shortest path in Ĝ is valid in G⋆.

• AnyPath%: fraction of pairs for which any discovered
path (shortest or not) is valid in G⋆.

• Transition%: fraction of directed edges (ci → cj) in
Ĝ whose labeled action yields a valid transition in G⋆
(edge counted correct only if validation succeeds).

b) Intra-cluster visual distance: , we report mean
intra-cluster visual distance (lower is better; 0 indicates
visually indistinguishable, values are in [0, 1]). This measures
whether visually similar (task-indistinguishable) observations
are grouped together.

C. Results

For each environment we sweep (kpick, kplace) and select
a solution by (i) feasibility with the fewest clusters and (ii)
lowest intra-cluster visual distance V (Sec. V-B). Fig. 4
(grid sweep) illustrates this selection on Fruit (hom.); we
use the same procedure in all domains. We then train the
few-shot localizer to map novel images to the learned graph
(Sec. VI-C). See Table I for the full metrics.

a) Planning quality: Across domains our method consis-
tently yields graphs that are connected and plan-worthy. On
both fruit tasks the abstraction supports successful planning
between essentially all start–goal pairs, with most plans also
shortest. In Blocks (2) we retain high planning success, and
even in the harder Blocks (3) (16 learned states) our abstrac-
tion still connects the space reliably, while the baselines rarely
find any valid path at all. In short: enforcing Exactly-One plus
a small action-variety cap produces globally navigable graphs;
the baselines often produce visually similar but disconnected
ones. (Compare AnyPath/Opt trends in Table I.)

b) Why “low V” or “high Trans” can mislead:
HDBSCAN (and, at times, Agglomerative) sometimes reports
lower visual intra-cluster distance (V ↓) and higher edge
validity (TRANS↑) than ours in the most challenging setting.
This is largely an artifact of fragmentation: over-splitting
the state space into many tiny clusters (often near dupli-
cates) drives intra-cluster distances down by construction,
and the few edges that remain are locally valid, inflating
TRANS. However, the graph breaks into small components,
so end-to-end connectivity collapses (very low AnyPath). Our
method accepts slightly higher V and a modest drop in local
edge purity in exchange for global connectivity and planning
success. See the contrast between TRANS and AnyPath on
Blocks (3) in Table I.

c) Cluster cohesion: On Fruit (Het) and Blocks (2), our
abstractions are at least as visually coherent as the baselines
(similar or lower V). On Blocks (3), the baselines’ slightly
lower V stems from the same over-segmentation discussed



above and does not translate into usable plans (AnyPath ≤
a few percent).

d) Few-shot localization: Despite few and imbalanced
labels, the graph localizer achieves ≈ 89% on both fruit
domains, ≈ 72% on Blocks (2), and ≈ 62% on Blocks
(3), tracking task difficulty and class count (Table II). This
indicates that the learned abstraction provides a practical label
space for visual planning.

e) Takeaways: (i) Structural constraints (Exactly-One,
bounded action variety) are decisive for building connected
abstractions that support planning; (ii) visual affinity is best
used to choose among feasible colorings, not to define the
graph alone; (iii) even with noisy, few labels, a lightweight
few-shot classifier suffices to localize observations on the
learned graph.

VIII. CONCLUSIONS

This work introduces one of the first approaches to en-
force graph-structural constraints in representation learning,
yielding action-consistent abstract graphs by construction.
While promising, our method faces several limitations. First,
scalability remains a challenge: solving the underlying graph
coloring problem grows combinatorially with data size, limit-
ing applicability to small domains. Future work could address
this by adopting hierarchical or factored representations
[23], enabling compact abstractions that scale with more
objects and actions. Also, our experiments are limited to
simulation. Evaluating on real robots will test robustness
under noise and uncertainty, and incorporating richer task
priors (e.g., forward/inverse dynamics) may further ground
the abstractions in physical interaction.
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