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Abstract
Wepropose a novel, multi-layered planning approach for computing
paths that satisfy both kinodynamic and spatiotemporal constraints.
Our three-part framework first establishes potential sequences to
meet spatial constraints, using them to calculate a geometric lead
path. This path then guides an asymptotically optimal sampling-
based kinodynamic planner, which minimizes an STL-robustness
cost to jointly satisfy spatiotemporal and kinodynamic constraints.
In our experiments, we test our method with a velocity-controlled
Ackerman-car model and demonstrate significant efficiency gains
compared to prior art. Additionally, our method is able to gener-
ate complex path maneuvers, such as crossovers, something that
previous methods had not demonstrated.
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1 Introduction
Motion planning is a core problem in robotics spanning applications
from autonomous cars to long-horizon manipulation. Sampling-
based planners [20] have shown great promise in efficiently com-
puting motion plans including scenarios where kinodynamic con-
straints must be considered. Recent kinodynamic planners have
shown both enhanced efficiency [21] and asymptotically optimal
(ao) convergence for a given cost [7] enabling the efficient compu-
tation of trajectories for non-holonomic robots such as acceleration-
bounded vehicles.

However, as robotics becomes more ubiquitous and tasks grow
in complexity, a single motion plan often fails to satisfy all task-
specific requirements. Increasingly, robotic tasks require additional
constraints to be met. For example, a delivery robot might need to
visit several different regions in a time-sensitive manner as shown
in Figure 1. To efficiently encode these complex mission objectives,
expressive and precise logic-based tools have been used to describe
the desired behavior of the system. Significant research has focused
on integrating these logic-based methods with motion planning to
tackle complex tasks. For instance, Linear Temporal Logic (ltl) [24]
has been widely used to encode sequential and safety requirements

* Equal contribution.
Code: https://github.com/elpis-lab/LG-SST-STL.

[22], while Planning Domain Definition Language (pddl) is widely
used for task and motion planning tasks in manipulation [8].
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Delivery Task: 
1. Deliver to location House eventually. 
2. Deliver to location Hospital within 35 minutes

Figure 1: A delivery robot tasked with reaching different
regions in a time sensitive-manner.

Signal Temporal Logic (stl) [18] has found widespread appli-
cability, as it can quantitatively monitor the satisfaction of spa-
tiotemporal requirements for system behavior across hybrid (dis-
crete and continuous) domains. Typically, stl problems are for-
mulated as Mixed Integer Linear Programs (milp) [2, 25], which
don’t naturally handle kinodynamic planning problems. Thus, re-
searchers [1, 10, 29] have started investigating encoding stl ro-
bustness as part of a cost function within asymptotically optimal
planners, such as rrt* [9]. However, this only applies to simple
kinodynamic models with easy to compute steering functions.

To jointly address the challenges of spatiotemporal and kinody-
namic constraints, we propose a novel multi-layer framework based
on Stable Sparse Tree (sst)[16] that maintains probabilistic com-
pleteness and ao guarantees without requiring steering functions.
Additionally, we introduce an efficient encoding scheme for the stl
formulas that enables robots to handle complex spatio-temporal
constraints using geometric leads. Our approach employs a decom-
position method by first generating a sequence of potential spatial
regions that need to be visited. Biased sampling is used to guide
exploration through these regions, providing improved efficiency,
while stl robustness is used as the cost of the sst planner.
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2 Related Work
Kinodynamic motion planning is challenging due to the complexi-
ties of differential constraints and high-dimensional state and con-
trol spaces. Finding an optimal control sequence to connect to points
in the state-space is known as the 2-point-boundary problem (2bvp),
which is impractical to compute multiple times [12]. Furthermore,
the high dimensionality of the state and control spaces poses signifi-
cant computational challenges, making it hard to efficiently explore
and optimize solutions [13].

Over the years, several sampling-based planners [20] tailored
towards kinodynamic-based systems have been proposed that do
not require solving 2bvp problem. Examples include the original
kinodynamic-RRT [13], and later layer-based improvements such
as kpiece [30] and syclops [23]. Additionally, ao kinodynamic
planners were developed that can optimize a given cost function
such as edge-bundling planners [26] and the sst planner. However,
these planners can only be used to solve a single motion plan,(e.g,
reaching a single goal region) which does not suffice for more
complex multi-goal missions such as in our setting.

To address this, researchers have leveraged practical tools and
extensive literature from formal methods to augment motion plan-
ners to synthesize controllers for temporal logic specifications
[11]. Methods most similar to our approach, which address spatio-
temporal constraints, typically utilize stl formulae to specify a
given task. These methods modify the cost function of the base
planner to maximize the robustness of the stl formula, [10, 17, 29].
However, the rely on geometric ao planners, which restrict their
applicability to systems with simple dynamics. Furthermore, as
stl formulae become more complex, encoding them into a single
cost function becomes increasingly computationally expensive. In
contrast, our work leverages kinodynamic ao planners that do
not require steering functions. Additionally, we propose a simple
yet complete method to reduce the complexity of the optimized
robustness function, enhancing computational efficiency without
sacrificing completeness.

3 Preliminaries
Let R,R≥0,N denote the set of real, non-negative real, and nat-
ural numbers, respectively. We denote by R𝑛 an 𝑛-dimensional
Euclidean space and by R𝑛×𝑚 a space of real matrices with 𝑛 rows
and 𝑚 columns. We use time intervals in the form [𝑎, 𝑏], 𝑎 ≤ 𝑏.
Further, we denote 𝑡 + [𝑎, 𝑏] by [𝑡 + 𝑎, 𝑡 + 𝑏].

Let (𝑀,𝑑) be a compact metric space with𝑀 ⊂ R𝑛, 𝑛 ≥ 1 , and
S = {𝑠 : R≥0 → 𝑀} the set of all infinite-time signals in 𝑀 . The
components of a signal 𝑠 ∈ S are denoted by 𝑠𝑖 , 𝑖 ∈ {1, . . . , 𝑛}. The
set of all linear functions over R𝑛 is denoted by F = {𝜋 : R𝑛 → R}.

The syntax of STL is defined as follows [18]:

𝜙 ::= ⊤ | 𝑝𝜋 (𝑥 )∼𝜇 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1U[𝑎,𝑏 ]𝜙2, (1)

where 𝑇 is the Boolean true constant; 𝑝𝜋 (𝑥 )∼𝜇 is a predicate over
R𝑛 parameterized by 𝜋 ∈ F , 𝜇 ∈ R and an order relation ∼∈ {≥, >
, ≤, <} of the form 𝑝𝜋 (𝑥 )∼𝜇 = 𝜋 (𝑥) ∼ 𝜇;¬ and ∧ are the Boolean
operators for negation and conjunction, respectively; andU[𝑎,𝑏 ] is
the bounded temporal operator until.

The Boolean semantics of STL is defined over signals in S recur-
sively as follows [18]:

(𝑠, 𝑡) |= ⊤ ⇔ ⊤
(𝑠, 𝑡) |= 𝑝𝜋 (𝑥 )≥𝜇 ⇔ 𝜋 (𝑠 (0)) ≥ 𝜇

(𝑠, 𝑡) |= 𝑝𝜋 (𝑥 )≤𝜇 ⇔ 𝜋 (𝑠 (0)) ≤ 𝜇

(𝑠, 𝑡) |= ¬𝜙 ⇔ ¬((𝑠, 𝑡) |= 𝜙)
(𝑠, 𝑡) |= (𝜙1 ∧ 𝜙2) ⇔ (𝑠 |= 𝜙1) ∧ ((𝑠, 𝑡) |= 𝜙2)
(𝑠, 𝑡) |= (𝜙1U[𝑎,𝑏 ]𝜙2) ⇔ ∃𝑡 ′ ∈ [𝑎, 𝑏]𝑠 .𝑡 .𝑠 (𝑡 ′) |= 𝜙2∧

∀𝑡 ′′ ∈ [0, 𝑡 ′)𝑠 (𝑡 ′′) |= 𝜙1 ,

(2)

A signal 𝑠 ∈ S is said to satisfy an STL formula 𝜙 if and only if
𝑠 (0) |= 𝜙 . The Boolean value false ⊥≡ ¬⊤ and additional opera-
tions (i.e., disjunction, implication, and equivalence) are defined in
the usual way. Also, the temporal operators eventually and glob-
ally are defined as 𝐹 [𝑎,𝑏 ]𝜙 ≡ ⊤U[𝑎,𝑏 ]𝜙 and 𝐺 [𝑎,𝑏 ]𝜙 ≡ ¬𝐹 [𝑎,𝑏 ]¬𝜙 ,
respectively.

In addition to Boolean semantics, STL admits quantitative se-
mantics [5, 6], which are formalized by the notion of the robustness
degree. The robustness degree of a signal 𝑠 ∈ S with respect to an
STL formula 𝜙 is a functional 𝜌 (𝑠, 𝜙) recursively defined as:

𝜌

(
𝑠, 𝑝𝜋 (𝑥 )≥𝜇 , 𝑡

)
= (𝜋 (𝑠 (0)) − 𝜇)

𝜌

(
𝑠, 𝑝𝜋 (𝑥 )≤𝜇 , 𝑡

)
= (𝜇 − 𝜋 (𝑠 (0)))

𝜌 (𝑠,¬𝜙, 𝑡) = −𝜌 (𝑠, 𝜙, 𝑡)
𝜌 (𝑠, 𝜙1 ∧ 𝜙2, 𝑡) = min {𝜌 (𝑠, 𝜙1, 𝑡) , 𝜌 (𝑠, 𝜙2, 𝑡)}
𝜌 (𝑠, 𝜙1 ∨ 𝜙2, 𝑡) = max {𝜌 (𝑠, 𝜙1, 𝑡) , 𝜌 (𝑠, 𝜙2, 𝑡)}
𝜌

(
𝑠, 𝜙1U[𝑎,𝑏 ]𝜙2, 𝑡

)
= max𝑡𝑢 ∈[𝑎,𝑏 ] {min {𝜌 (𝑠, 𝜙2, 𝑡) ,
min𝑡 ′∈[0,𝑡𝑢 ) {𝜌 (𝑠, 𝜙1, 𝑡)}

}}
𝜌

(
𝑠, 𝐹 [𝑎,𝑏 ]𝜙, 𝑡

)
= max𝑡𝑢 ∈[𝑎,𝑏 ] {𝜌 (𝑠, 𝜙, 𝑡)}

𝜌

(
𝑠,𝐺 [𝑎,𝑏 ]𝜙, 𝑡

)
= min𝑡𝑢 ∈[𝑎,𝑏 ] {𝜌 (𝑠, 𝜙, 𝑡)} .

(3)

The robustness degree is sound, i.e., 𝑠 |= 𝜙 ⇐⇒ 𝜌 (𝑠, 𝜙, 𝑡) ≥ 0.

4 Problem Statement
4.1 Kinodynamic Constraints
Let 𝑆 = (𝑓 , 𝑋,𝑈 , 𝑥𝑖𝑛𝑖𝑡 ) be a dynamical system, where 𝑋 ⊆ R𝑛 and
𝑈 ⊆ R𝑚 are the bounded state and control spaces. The state space
𝑋 contains obstacles 𝑋𝑜𝑏𝑠 ⊂ 𝑋 and the free space is denoted by
𝑋𝑓 = 𝑋 \ 𝑋𝑜𝑏𝑠 . 𝑓 : 𝑋 ×𝑈 → 𝑋 is a Lipschitz continuous function,
and 𝑥init is the initial state of the system. The system behavior is
dictated by differential equations of the following form:

¤𝑥 = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡)) (4)

Where, 𝑥 (𝑡) ∈ 𝑋,𝑢 (𝑡) ∈ 𝑈 . we denote by 𝑥 [𝑥𝑖𝑛𝑖𝑡 , 𝑢] the state
trajectory originating at 𝑥init obtained by implementing control
policy 𝑢. Let 𝜐 = {𝑢 : 𝑅≥0 → 𝑈 } be the set of all control policies.
The system 𝑆 is said to satisfy an STL specification𝜙 under a control
policy 𝑢 ∈ 𝜐 if the state trajectory starting at 𝑥0 satisfies 𝜙 , i.e.,
𝑥 [𝑥init, 𝑢] |= 𝜙 .

4.2 Mission Specification
In this work, we focus primarily on the development of a highly
efficient trajectory planner to use in the context of a temporal logic
planning problem. As such, we assume the existence of a candidate
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solution, which can be obtained via solving a MILP using a low-
fidelity motion model [2, 25], applying SMT-based reasoning over
an abstract syntax tree representation [3, 14], or by using a logic
such as Time Window Temporal Logic [28]. Typical approaches to
solving plan synthesis with a MILP use low-fidelity motion models
to identify a discrete motion plan, which is then implemented by
a continuous motion planner [15]. For non-trivial motion models,
a low-fidelity model may be highly inaccurate or produce infeasi-
ble trajectories. Thus, we consider an intermediate specification
consisting of disjoint regions to be visited, each with its own time
intervals. That is, we assume a high-level planner produces a specifi-
cation Ψ such that for a given signal 𝑠 , 𝑠 |= Ψ =⇒ 𝑠 |= 𝜙 . However,
since the high-level planner does not account for kinodynamic
motion plans, satisfaction of the (simpler) specification Ψ may not
be possible. Our approach is agnostic to how Ψ is obtained. Thus,
Ψ is directly part of our problem formulation. Our goal is to find
kinodynamic plans over a fragment of STL of the form:

Ψ =

(
𝑛∧
𝑖=1

𝜓 𝑖
𝑏

)
∧ ©­«

𝑚∧
𝑗=1

𝜓 𝑖
𝑢𝑛

ª®¬
𝜓 𝑖
𝑏
= F[𝑎𝑖 ,𝑏𝑖 ] (𝑥 ∈ 𝑋𝑔𝑜𝑎𝑙𝑖 )

𝜓
𝑗
𝑢𝑛 = F[0,∞) (𝑥 ∈ 𝑋𝑔𝑜𝑎𝑙 𝑗 )

(5)

Where, 𝜓𝑏 ,𝜓𝑢𝑛 represent bounded, and unbounded goals respec-
tively. Unbounded goals are defined over the interval [0,∞).

Problem 3.1:Given a dynamical system 𝑆 and an STL specification
Ψ as written in (5), find a control policy 𝑢 such that the system
satisfies Ψ under policy 𝑢, and the cost function (based on the
robustness metric) for the state trajectory is minimized.

It will be necessary to assume that the problem can be solved
using trajectories generated by piecewise constant control func-
tions. This is a reasonable way to generate a trajectory using a
computational approach [16].

5 Proposed Approach
In this section, we describe how the proposed algorithm finds a
kinodynamically feasible path that satisfies the specification Ψ, as
outlined in Algorithm 1. First, CandidatePlans(Ψ) enumerates all
possible orders in which the spatial regions can be visited while
adhering to time constraints. Next, GeoPlanner generates a geo-
metric path that visits these regions in the specified order. Finally,
this geometric path is passed to our LG-SST-STL planner (modified
SST planner [16]) which utilizes the geometric path as a guide for
sampling, optimizing for the robustness value of the formula Ψ. If
LG-SST-STL returns a positive robustness value, this indicates that
the found kinodynamic path is valid, and the process concludes.

5.1 Discrete Region Orders
Algorithm 2 comes up with all possible orders of regions that need
to be visited sequentially to satisfy the formula Ψ. In algorithm
2, lines 2-5, all bounded goals, denoted by 𝜓𝑏 , are evaluated for
potential time overlaps. If there is no overlap, one region must be
visited strictly before the other, and these orderings are added to
the set of constraints. Subsequently, in Algorithm 2, lines 7-9, we
generate all possible permutations of the regions to be visited and
check for any violations of the ordering constraints derived from

Algorithm 1: High Level Planner
Input: 𝑆 = (𝑓 , 𝑋,𝑈 , 𝑥𝑖𝑛𝑖𝑡 ), 𝑁𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 , 𝐽 (𝑥,𝑢), Ψ
Output: Optimal Control Policy 𝑢∗

1 {𝑀1, 𝑀2, ..., 𝑀𝑚} ← CandidatePlans(Ψ)
2 for 𝑖 ← 1 to𝑚 do
3 {𝐺𝑃, 𝐿𝑚𝑎𝑥 } ← GeoPlanner(𝑀𝑖 )
4 {𝑢, 𝜌} ← LG-SST-STL({𝑆,𝐺𝑃, 𝐿𝑚𝑎𝑥 })
5 if 𝜌 ≥ 0 then
6 return u

Algorithm 2: CandidatePlans
Input: Ψ
Output:𝑀1, . . . , 𝑀𝑚

1 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ← {}
2 for 𝑖 = 1 to 𝑛 do
3 for 𝑗 = 1 to 𝑛 do
4 if no_time_overlap(𝜓 𝑖

𝑏
,𝜓

𝑗

𝑏
) then

5 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ← {𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, (𝑖, 𝑗)}

6 M ← {}
7 for𝑀 ∈ 𝑝𝑒𝑟𝑚(𝜓𝑏 ,𝜓𝑢𝑛) do
8 if 𝑛𝑜_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝑀) then
9 M ← {M, 𝑀}

10 returnM

the time intervals. If no constraints are violated, the permutation is
added to the set of candidate paths.

This algorithm has a worst-case time complexity of O(𝑛!) in
terms of the number of potential candidate paths to be planned
by the motion planner. Nonetheless, as it enumerates all possible
orders, it is complete. Additionally, for complex nonlinear dynamic
models where computing steering functions are intractable, we
argue that alternative methods encoding the full formula 𝜙 as a
single cost function in an ao planner fail to achieve convergence to
positive robustness, as demonstrated by our experimental results.

5.2 Continuous Spatial Path
The candidate sequence regions𝑀 = {𝑋𝑔𝑜𝑎𝑙1 , 𝑋𝑔𝑜𝑎𝑙2 , . . . , 𝑋𝑔𝑜𝑎𝑙𝑛 }, to
be visited, serves as a series of intermediate goals, where 𝑋𝑔𝑜𝑎𝑙1 =

𝑥𝑖𝑛𝑖𝑡 is the initial state and 𝑋𝑔𝑜𝑎𝑙𝑛 = 𝑥𝑔𝑜𝑎𝑙 is the final goal. To
construct the lead geometric path 𝐺𝑃 , we utilize a geometric plan-
ner, such as Rapidly-exploring Random Trees (rrt*). The path is
generated as the sum of sub-paths, where each sub-path connects
two consecutive intermediate goals, GeoPlan(𝑋𝑔𝑜𝑎𝑙𝑖 , 𝑋𝑔𝑜𝑎𝑙𝑖+1 ) for
𝑖 = 1, . . . , 𝑛 − 1, as described in Algorithm 3, Line 3.

We propose decomposing the global geometric path 𝐺𝑃 into
sub-regions called Layers. We construct one layer for each subpath
(𝑋𝑔𝑜𝑎𝑙𝑖 , 𝑋𝑔𝑜𝑎𝑙𝑖+1 ) and for each subgoal𝑋𝑔𝑜𝑎𝑙𝑖 for a total 2𝑛−1 layers.
An illustrative example is shown in Figure 2, where intermediate
goals and their connecting subpaths are structured into layers.
These layers define regions that guide biased sampling, enforce the
correct visitation order of the tree, and enable crossovers when
necessary based on the sequence of regions.



Chatrola et al.

Algorithm 3: GeoPlanner
Input:𝑀
Output: 𝐺𝑃, 𝐿𝑚𝑎𝑥

1 {𝑋𝑔𝑜𝑎𝑙1 , 𝑋𝑔𝑜𝑎𝑙2 , . . . , 𝑋𝑔𝑜𝑎𝑙𝑛 } = 𝑀

2 𝑋𝑔𝑜𝑎𝑙1 = 𝑥𝑖𝑛𝑖𝑡 , 𝑋𝑔𝑜𝑎𝑙𝑛 = 𝑥𝑔𝑜𝑎𝑙

3 𝐺𝑃 ← ∑𝑛−1
𝑖=1 RRT*(𝑋𝑔𝑜𝑎𝑙𝑖 , 𝑋𝑔𝑜𝑎𝑙𝑖+1 )

4 𝐿𝑚𝑎𝑥 ← 2𝑛 − 1

5.3 Kinodynamic Spatial Temporal Path
In this section, we explain in detail the modifications we propose
and outline how our framework integrates with the sst [16] planner.
Modifications are highlighted in green in Algorithm 4, and the
following subsections explain each modification in detail.

Algorithm 4: LG-SST-STL
Input: 𝑆 = (𝑓 , 𝑋,𝑈 , 𝑥𝑖𝑛𝑖𝑡 ), 𝑁𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 , 𝐽 (𝑥,𝑢), 𝐺𝑃, 𝐿𝑚𝑎𝑥

Output: Optimal Control Policy 𝑢∗
1 T = {𝑥𝑖𝑛𝑖𝑡 }; Cost(𝑥𝑖𝑛𝑖𝑡 ) = 0
2 for 𝑖 = 1 to 𝑁𝑚𝑎𝑥 do
3 𝐿𝑟𝑎𝑛𝑑 , 𝑥𝑟𝑎𝑛𝑑 ← SpatialBiasSampler(𝑋, 𝐿𝑚𝑎𝑥 )
4 𝑥𝑛𝑒𝑎𝑟 ← NearestNeighbor(T , 𝑥𝑟𝑎𝑛𝑑 )
5 𝑢𝑟𝑎𝑛𝑑 ← Sample(𝑈 )
6 𝑇𝑟𝑎𝑛𝑑 ← Sample(0, 𝑇𝑚𝑎𝑥 )
7 𝑥 [𝑡] ← 𝑥𝑛𝑒𝑎𝑟 +

∫ 𝑇𝑟𝑎𝑛𝑑
0 𝑓 (𝑥 (𝜏), 𝑢𝑟𝑎𝑛𝑑 )𝑑𝜏

8 if 𝑥 [𝑡] ∈ 𝑋𝑓 then
9 if dist(𝑥 [𝑡] - 𝐺𝑃 ) ≤ 𝑟𝑝𝑟𝑜𝑝 then
10 𝐿(𝑥 [𝑡]) ← 𝐿𝑎𝑦𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛(𝑥 (𝑡))
11 if |𝐿(𝑥𝑛𝑒𝑎𝑟 ) − 𝐿(𝑥 [𝑡]) | ≤ 1 then
12 newCost← Cost(𝑥𝑛𝑒𝑎𝑟 ) + 𝐽 (𝑥 [𝑡], 𝑢𝑟𝑎𝑛𝑑 )
13 if newCost < Cost(𝑥 [𝑡]) or 𝑥 [𝑡] ∉ T then
14 AddNode(T , 𝑥 [𝑡])
15 Cost(𝑥 [𝑡]) ← newCost
16 UpdateTree(T , 𝑥 [𝑡])

17 if IsGoalReached(𝑥 [𝑡], 𝑥𝑔𝑜𝑎𝑙 ) then
18 return ReconstructPath(T , 𝑥 [𝑡]), 𝑢 [𝑡]

19 return Failure

We introduce four major modifications Biased Sampling strat-
egy, Planner Layers, Propagation Radius, and modified Cost
Function to the SST planner [16].

5.3.1 Biased Sampling. We use the global geometric path 𝐺𝑃 to
bias the sampling strategy. This strategy confines sampling to re-
gions proximal to the global path. To control this proximity, we
introduce a new parameter called the sampler selection radius
(𝑠𝑟 ), which restricts sampling to a neighborhood around𝐺𝑃 . The
sampling process is described in Algorithm 5, specifically Line 2,
and is illustrated in Figure 2 which is the outer layer shaded in
the color orange. By focusing sampling efforts along the guidance
path, the planner achieves higher computational efficiency. This
is because the geometric path provides a partial solution for the
spatial component of the STL specification, significantly reducing
the search space.

Algorithm 5: Spatial Bias Sampler
Input: 𝑋, 𝐿𝑚𝑎𝑥

Output: 𝑥𝑟𝑎𝑛𝑑 , 𝐿𝑟𝑎𝑛𝑑
1 𝐿𝑟𝑎𝑛𝑑 ← Sample(0, 𝐿𝑚𝑎𝑥 )
2 𝑥𝑟𝑎𝑛𝑑 ← BiasSampler(𝑋, 𝑠𝑟 )

5.3.2 Layer Assignment. The layers assigned to the global path
earlier are now used to guide the planner during sampling and tree
growth. Specifically, each sampling iteration selects a layer, 𝐿𝑟𝑎𝑛𝑑 ,
and a sample, 𝑥𝑟𝑎𝑛𝑑 , within that layer as shown in Algorithm 5,
Line 1. This ensures that the planner grows the tree within the
selected layer, as illustrated in Figure 2.

Layers are also assigned to each node in the planner’s tree based
on proximity to the corresponding layer of 𝐺𝑃 . This assignment is
described in Algorithm 6, Line 1. A new node, 𝑥 [𝑡], is only added
to the tree if it belongs to a layer consecutive to its parent node, as
enforced in Algorithm 4, Line 11. This restriction ensures that
the planner maintains consistency with the stl specification and
avoids undesired behavior by connecting with incorrect nodes in
the tree.

Algorithm 6: Layer Assignment
Input: 𝑥 [𝑡]
Output: 𝐿(𝑥 [𝑡])

1 𝐿(𝑥 [𝑡]) ← arg min𝑙∈{1,...,𝐿𝑚𝑎𝑥 } dist(𝑥 [𝑡],𝐺𝑃𝑙 )

Layer 3Layer 2Layer 1

21

1

1

3

3

3

Figure 2: Layer Assignment and connection of nodes, the
magnified image depicts the node that skips layers are re-
jected.

5.3.3 Propagation Radius. We introduce a new parameter, the
propagation allowed radius (𝑟𝑝𝑟𝑜𝑝 ), which limits the planner’s
growth to remain within a defined radius t the global path𝐺𝑃 . This
restriction is enforced in Algorithm 4, Line 9. If a propagated
node 𝑥 [𝑡] exceeds 𝑟𝑝𝑟𝑜𝑝 , it is rejected, as shown in Figure 3.

By limiting deviations from the global path, the propagation
radius ensures that the planner remains focused on regions critical
for satisfying stl constraints. Adjusting 𝑟𝑝𝑟𝑜𝑝 can help balance
between exploration and adherence to the guidance path.
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Rejected Nodes

Figure 3: The figure shows rejection of nodes that deviate
more than allowed by the propagation radius

5.3.4 Satisfy the Temporal constraints (Cost Function). The above
methodology will help us create a kinodynamic path that will sat-
isfy all the spatial components of the stl formulae by design, and
it will additionally be time-parameterized. In order to satisfy the
stl specification, we are going to use a cost function with a kino-
dynamic motion planner. Cost functions have been used before in
many different scenarios, such as [10, 17, 29]. We will be using a
simple cost inspired by [17] that will ensure that as it decreases, the
stl specification will be satisfied. We define a simple cost function 𝐽

that includes the robustness of an stl specification. For calculating
cost after each new node that is added to the tree T , we make the
cost compute recursive, which helps reduce overhead.

Hereinafter, we define the robustness value 𝜌 associated to a
node x𝑖 in T . Since a trajectory until a given node in the LG-SST-
STL tree might be partially testable against the STL specification,
we recursively define the robustness of (partial) trajectories until
node x𝑖 . Consider a simple specification like 𝐹 [4,5] (𝑥 > 2). It is not
possible to assess the trajectory’s robustness against the specifica-
tion until the first observation of the trajectory for time 𝑡 = 4 has
been made. As highlighted in [4], we use and maintain a syntax
tree of STL formula in memory, augmented with a robustness value
𝜌 associated with the nodes in T . Temporal operators are equipped
with robustness values 𝜌 for nodes x𝑖 ∈ X, that are stored. Further,
we define by 𝜌parent : X × ΦΣ → R ∪ {★} the 𝜌 value of a tempo-
ral operator in the syntax tree of the specification, for the parent
of node x𝑖 in the LG-SST-STL tree, where ★ is a dummy symbol
used to provide no real value to a formula, the robustness of which
cannot be stated for a given trajectory (i.e., for trajectories shorter
than the lower bound of the interval of a temporal operator). In
the following, 𝜌parent is called to compute the actual value of 𝜌 for
node x𝑖 (since 𝜌 depends on the value of 𝜌 for the parent node of
x𝑖 ). The robustness value 𝜌 : X × ΦΣ ×N→ R∪ {★} associated to

a node x𝑖 in T is given by the recursive function:

𝜌 (x𝑖 , (𝑓 (𝜉𝑖 ) ∼ 𝜇), 𝑡) =
{
𝜇 − 𝑓 (𝜉𝑖 (𝑡)) ∼=≤
𝑓 (𝜉𝑖 (𝑡)) − 𝜇 ∼=≥

(6)

𝜌 (x𝑖 , 𝜙1 ∧ 𝜙2, 𝑡) =



★ if 𝜌 (x𝑖 , 𝜙1, 𝑡) and
𝜌 (x𝑖 , 𝜙2, 𝑡) = ★

𝜌 (x𝑖 , 𝜙1, 𝑡) if 𝜌 (x𝑖 , 𝜙2, 𝑡) = ★

𝜌 (x𝑖 , 𝜙2, 𝑡) if 𝜌 (x𝑖 , 𝜙1, 𝑡) = ★

min(𝜌 (x𝑖 , 𝜙1, 𝑡), 𝜌 (x𝑖 , 𝜙2, 𝑡))

(7)

𝜌 (x𝑖 , 𝐹 [𝑎,𝑏 ]𝜙, 𝑡) =


★ if 𝑡 < 𝑎 or 𝑡 > 𝑏

𝜌 (x𝑖 , 𝜙, 𝑡) if 𝑡 = 𝑎

max(𝜌 (x𝑖 , 𝜙, 𝑡), 𝜌parent (x𝑖 , 𝐹 [𝑎,𝑏 ]𝜙))
(8)

𝜌 (x𝑖 , 𝐹𝜙, 𝑡) = max(𝜌 (x𝑖 , 𝜙, 𝑡), 𝜌parent (x𝑖 , 𝐹𝜙)) (9)

Timed temporal operators, the design of 𝜌 only uses the evalua-
tion of predicates for the relevant time intervals. Outside of these,
predicates are not evaluated, hence are not reflected in the calcula-
tion of the cost function. Also, the definition of 𝜌 as such enables
an easy computation of the min and max in the case of temporal
operators: for a given node x𝑖 , the whole trajectory until node x𝑖
doesn’t need to be tested, but only the spatial coordinates of node
x𝑖 and the value of 𝜌 of the temporal operator for the parent of
x𝑖 , which leads to lower computational complexity. We now define
¯̄𝜌 : X×ΦΣ ×N→ R, that will be directly called by the LG-SST-STL
cost function:

𝐽 (x𝑖 ) = 𝐽𝜙 (x𝑖 ) = ¯̄𝜌 (x𝑖 , 𝜙, 𝑡) = −min (𝜌 (x𝑖 , 𝜙, 𝑡) , 0) (10)

6 Case Studies
We validate our approach through simulations conducted using the
Open Motion Planning Library (OMPL)[27]. Our experiments en-
compass three environments, each designed to test an Ackermann-
steered vehicle navigating in 𝑆𝐸 (2) configuration space, where the
state vector x = [𝑥,𝑦, 𝜃 ]𝑇 ∈ R2 × S1 represents the vehicle’s po-
sition and orientation. The system dynamics follow the standard
Ackermann-steering model:

¤𝑥 = 𝑣 cos(𝜃 ), ¤𝑦 = 𝑣 sin(𝜃 ), ¤𝜃 =
𝑣

𝐿
tan(𝛿) (11)

where 𝑣 is the linear velocity, 𝐿 is the wheelbase length, and 𝛿 ∈
[−𝛿𝑚𝑎𝑥 , 𝛿𝑚𝑎𝑥 ] is the steering angle. Each environment presents
unique challenges and incorporates different stl specifications.

For the experiments, the intermediary goal threshold 𝜀 is set to
0.3m, ensuring the vehicle comes sufficiently close to each goal
region. We evaluate our approach against the baseline SST plan-
ner with STL cost using OMPL’s benchmarking tools [19]. The
experimental evaluation consists of 60 runs for each planner across
three distinct environments. All experiments were conducted on a
system equipped with an Intel i9-14900K processor. For each run,
we analyze the evolution of the STL cost 𝐽 over a time horizon of
300 seconds, along with the computational resources required by
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A) Experiment 1

SST-STL LG-SST-STL

B) Experiment 2 C) Experiment 3

Figure 4: Comparison of the SST-STL (purple paths and yellow curves) and LG-SST-STL (red paths and blue curves) planners
across three experiments. The top row shows the trajectories generated by each planner, with green circles denoting the
intermediate goals and the global geometric path shown as a dashed blue line. The middle row displays the average best cost
achieved by each planner over time. The bottom row compares the total number of states in the search graph.

each planner. The comparative results of both performance metrics
are presented in Figure 4.

6.1 Experiment 1:
The Objective of Experiment 1 is to evaluate the capability of the
SST-STL planner and the proposed LG-SST-STL planner in sequen-
tially achieving two unbounded spatial goals without incorporating
time bounds into the cost function. This experiment assesses the
planners’ ability to generate feasible paths that satisfy the given
STL specifications.

Ψ = F
(
|𝑥 − 5| ≤ 𝜀 ∧ |𝑦 − 4| ≤ 𝜀

)
∧ F

(
|𝑥 − 10| ≤ 𝜀 ∧ |𝑦 − 4| ≤ 𝜀

)
(12)

As depicted in Figure 4, both the SST-STL planner and the LG-SST-
STL planner successfully converged to feasible solutions, generating
paths that satisfy the specified STL fragment.

6.2 Experiment 2:
This experiment consists of four sequential, time-bounded goals
designed to evaluate the planner’s ability to handle temporal con-
straints in navigation along with a rectangular obstacle

Ψ =F[0,3]
(
|𝑥 − 0.5| ≤ 𝜀 ∧ |𝑦 − 4| ≤ 𝜀

)
∧

F[6,20]
(
|𝑥 − 5| ≤ 𝜀 ∧ |𝑦 − 4| ≤ 𝜀

)
∧

F[20,40]
(
|𝑥 − 10| ≤ 𝜀 ∧ |𝑦 − 4| ≤ 𝜀

)
∧

F[35,65]
(
|𝑥 − 10| ≤ 𝜀 ∧ |𝑦 − 1| ≤ 𝜀

)
,

(13)

where F[𝑡1,𝑡2 ] specifies that the corresponding spatial constraints
must be satisfied within the time interval [𝑡1, 𝑡2].

As shown in 4B, the sst planner with stl cost struggles to find
a path that meets all goals while adhering to the specified time
bounds. The planner opts for a longer path around the obstacle
instead of navigating above it. This inefficiency prevents the planner
from reaching Goals 1 and 2 within their respective time bounds,
ultimately achieving only Goal 3 on time.

In contrast, the layer-guided sst planner with sst cost demon-
strates significant improvements. By selecting the shortest route
to Goal 1, it satisfies the time constraint and sequentially meets
the deadlines for Goals 2 and 3. Notably, this approach requires ten
times fewer graph states than the baseline sst planner, resulting in
a faster and more computationally efficient solution.

6.3 Experiment 3
In this experiment, we demonstrate the planner’s ability to handle
loops and crossovers. This capability is achieved through our layer
assignment strategy, which restricts node connections to adjacent
layers, effectively addressing the challenges posed by loops in path
planning.

The environment includes multiple goals with overlapping time
bounds, creating a scenario where the order of visiting certain
goals does not impact the overall satisfaction of the temporal logic
specification. The stl specification for this experiment is formulated
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as follows:
Ψ =F[0,2]

(
|𝑥 − 0.5| ≤ 𝜀 ∧ |𝑦 − 4| ≤ 𝜀

)
∧

F[6,20]
(
|𝑥 − 5| ≤ 𝜀 ∧ |𝑦 − 4| ≤ 𝜀

)
∧

F[20,30]
(
|𝑥 − 4| ≤ 𝜀 ∧ |𝑦 − 1| ≤ 𝜀

)
∧

F[25,90]
(
|𝑥 − 1| ≤ 𝜀 ∧ |𝑦 − 1| ≤ 𝜀

)
∧

F[30,120]
(
|𝑥 − 1.25| ≤ 𝜀 ∧ |𝑦 − 3.5| ≤ 𝜀

)
∧

F[35,150]
(
|𝑥 − 4| ≤ 𝜀 ∧ |𝑦 − 6| ≤ 𝜀

)
,

(14)

Where F[𝑡1,𝑡2 ] specifies that the corresponding spatial constraints
must be satisfied within the time interval [𝑡1, 𝑡2].

Due to the overlapping time bounds of Goals 2, 3, and 4, the
order in which these goals are visited is interchangeable, provided
that each is reached within its respective time interval. This results
in multiple feasible sequences, and the planner must consider all
permutations to find an optimal path. The total number of possible
sequences is given by the factorial of the number of interchangeable
goals i.e. 𝑛! = 3! = 6.

Start Goal 1

Goal 2

Goal 3

Goal 4

Goal 5

Visit all before Goal 5

Figure 5: Graph representation of possible sequences from
Goal 1 to Goal 5 through interchangeable Goals 2, 3, and 4,
where all must be visited before proceeding to Goal 5.

Even though our method needs to be run for each of these permu-
tations, it still requires less time and converges to a solution faster
than the baseline SST-STL planner. Our layer-guided SST planner
efficiently navigates through these permutations by leveraging the
geometric path, which reduces the search space and computational
complexity.

As illustrated in Figure 4, our planner successfully finds a solu-
tion within 300 seconds. In contrast, the baseline SST-STL planner,
even after running for seven times longer (2100 seconds), fails to
converge to a solution, even though it has almost 14 times the
amount of states in its graph.

7 Conclusion
We developed a new three-part approach to motion planning that ef-
ficiently handles spatiotemporal constraints. Our experiments with
an Ackermann-steered vehicle demonstrated that the proposed
method significantly reduces computation time while handling
complex scenarios with time-bounded goals. Notably the proposed

method, can even produce crossover paths, if required by the specifi-
cation. Future work could explore more expressive STL constraints,
dynamic obstacles, and multi-robot systems.
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