
Accepted for publication in the ACM International Conference on Hybrid Systems Computation and Control (HSCC), May 2025

Multi-layer Motion Planning with Kinodynamic and
Spatio-Temporal Constraints

Jeel Chatrola*
jchatrola@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

Abhiroop Ajith*
aajith@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

Kevin Leahy
kleahy@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

Constantinos Chamzas
cchamzas@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

Abstract
Wepropose a novel, multi-layered planning approach for computing
paths that satisfy both kinodynamic and spatiotemporal constraints.
Our three-part framework first establishes potential sequences to
meet spatial constraints, using them to calculate a geometric lead
path. This path then guides an asymptotically optimal sampling-
based kinodynamic planner, which minimizes an STL-robustness
cost to jointly satisfy spatiotemporal and kinodynamic constraints.
In our experiments, we test our method with a velocity-controlled
Ackerman-car model and demonstrate significant efficiency gains
compared to prior art. Additionally, our method is able to gener-
ate complex path maneuvers, such as crossovers, something that
previous methods had not demonstrated.

Keywords
Motion Planning, Signal Temporal Logic, Robotics

1 Introduction
Motion planning is a core problem in robotics spanning applications
from autonomous cars to long-horizon manipulation.

Sampling-based planners [22] have shown great promise in ef-
ficiently computing motion plans including scenarios where kin-
odynamic constraints must be considered. Recent kinodynamic
planners have shown both enhanced efficiency [23] and asymptot-
ically optimal (ao) convergence for a given cost [7] enabling the
efficient computation of trajectories for non-holonomic robots such
as acceleration-bounded vehicles.

However, as robotics becomes more ubiquitous and tasks grow
in complexity, a single motion plan often fails to satisfy all task-
specific requirements. Increasingly, robotic tasks require additional
constraints to be met. For example, a delivery robot might need to
visit several different regions in a time-sensitive manner as shown
in Figure 1. To efficiently encode these complex mission objectives,
expressive and precise logic-based tools have been used to describe
the desired behavior of the system. Significant research has focused
on integrating these logic-based methods with motion planning to
tackle complex tasks. For instance, Linear Temporal Logic (ltl) [26]
has been widely used to encode sequential and safety requirements

* Equal contribution.
Code: https://github.com/elpis-lab/LG-SST-STL.

[24], while Planning Domain Definition Language (pddl) is widely
used for task and motion planning tasks in manipulation [8].

t = 20 mins 

Lead Geometric Path

Guided Kinodynamic Path 

Kinodynamic Tree 

Biased Sampling

t = 0

t = 32 mins

Delivery Task: 
1. Deliver to location House eventually. 
2. Deliver to location Hospital within 35 minutes

Figure 1: A delivery robot tasked with reaching different
regions in a time sensitive-manner.

Signal Temporal Logic (stl) [20] has found widespread appli-
cability, as it can quantitatively monitor the satisfaction of spa-
tiotemporal requirements for system behavior across hybrid (dis-
crete and continuous) domains. Typically, stl problems are for-
mulated as Mixed Integer Linear Programs (milp) [2, 27], which
don’t naturally handle kinodynamic planning problems. Thus, re-
searchers [1, 11, 31] have started investigating encoding stl ro-
bustness as part of a cost function within asymptotically optimal
planners, such as rrt* [10]. However, this only applies to simple kin-
odynamic models with easy to compute steering functions. Parallel
work [9] drives the search with a time-partitioned STL automaton
instead of a single robustness cost , but their method still requires
a steering function—limiting applicability to complex dynamics.

To jointly address the challenges of spatiotemporal and kinody-
namic constraints, we propose a novel multi-layer framework based
on Stable Sparse Tree (sst)[18] that maintains probabilistic com-
pleteness and ao guarantees without requiring steering functions.
Additionally, we introduce an efficient encoding scheme for the stl
formulas that enables robots to handle complex spatio-temporal
constraints using geometric leads. Our approach employs a decom-
position method by first generating a sequence of potential spatial
regions that need to be visited. Biased sampling is used to guide
exploration through these regions, providing improved efficiency,
while stl robustness is used as the cost of the sst planner.

https://orcid.org/0009-0008-1458-332X
https://orcid.org/0009-0002-3986-7122
https://orcid.org/0000-0001-5894-7190
https://orcid.org/0000-0001-5830-5542
https://github.com/elpis-lab/LG-SST-STL


Accepted for publication in the ACM International Conference on Hybrid Systems Computation and Control (HSCC), May 2025

Chatrola et al.

2 Related Work
Kinodynamic motion planning is challenging due to the complexi-
ties of differential constraints and high-dimensional state and con-
trol spaces. Finding an optimal control sequence to connect to points
in the state-space is known as the 2-point-boundary problem (2bvp),
which is impractical to compute multiple times [14]. Furthermore,
the high dimensionality of the state and control spaces poses signifi-
cant computational challenges, making it hard to efficiently explore
and optimize solutions [15].

Over the years, several sampling-based planners [22] tailored
towards kinodynamic-based systems have been proposed that do
not require solving 2bvp problem. Examples include the original
kinodynamic-RRT [15], and later layer-based improvements such
as kpiece [32] and syclops [25]. Additionally, ao kinodynamic
planners were developed that can optimize a given cost function
such as edge-bundling planners [28] and the sst planner. However,
these planners can only be used to solve a single motion plan,(e.g,
reaching a single goal region) which does not suffice for more
complex multi-goal missions such as in our setting.

To address this, researchers have leveraged practical tools and
extensive literature from formal methods to augment motion plan-
ners to synthesize controllers for temporal logic specifications
[12]. Methods most similar to our approach, which address spatio-
temporal constraints, typically utilize stl formulae to specify a
given task. These methods modify the cost function of the base
planner to maximize the robustness of the stl formula, [11, 19, 31].
However, the rely on geometric ao planners, which restrict their
applicability to systems with simple dynamics. Furthermore, as
stl formulae become more complex, encoding them into a single
cost function becomes increasingly computationally expensive. In
contrast, our work leverages kinodynamic ao planners that do
not require steering functions. Additionally, we propose a simple
yet complete method to reduce the complexity of the optimized
robustness function, enhancing computational efficiency without
sacrificing completeness.

3 Preliminaries
Let R�R�0�N denote the set of real, non-negative real, and nat-
ural numbers, respectively. We denote by R= an =-dimensional
Euclidean space and by R=�< a space of real matrices with = rows
and < columns. We use time intervals in the form »0� 1…� 0 � 1.
Further, we denote C ‚ »0� 1… by »C ‚ 0� C ‚ 1….

Let „"�3” be a compact metric space with" � R=� = � 1 , and
S = fB : R�0 ! "g the set of all infinite-time signals in " . The
components of a signal B 2 S are denoted by B8 � 8 2 f1� � � � � =g. The
set of all linear functions over R= is denoted by F = fc : R= ! Rg.

The syntax of STL is defined as follows [20]:

q ::= > j ?c „G ”�‘ j :q j q1 ^ q2 j q1U»0�1 …q2� (1)

where ) is the Boolean true constant; ?c „G ”�‘ is a predicate over
R= parameterized by c 2 F � ‘ 2 R and an order relation �2 f�� ¡
� �� �g of the form ?c „G ”�‘ = c „G” � ‘;: and ^ are the Boolean
operators for negation and conjunction, respectively; andU»0�1 …
is the bounded temporal operator until. The Boolean semantics of

STL is defined over signals in S recursively as follows [20]:
„B� C” j= > , >
„B� C” j= ?c „G ”�‘ , c „B „0”” � ‘
„B� C” j= ?c „G ”�‘ , c „B „0”” � ‘
„B� C” j= :q , :„„B� C” j= q”
„B� C” j= „q1 ^ q2” , „B j= q1” ^ „„B� C” j= q2”
„B� C” j= „q1U»0�1 …q2” , 9C 0 2 »0� 1…B �C �B „C 0” j= q2^

8C 00 2 »0� C 0”B „C 00” j= q1 �

(2)

A signal B 2 S is said to satisfy an STL formula q if and only if
B „0” j= q . The Boolean value false?� :> and additional operations
(i.e., disjunction, implication, and equivalence) are defined in the
usual way. Also, the temporal operators eventually and globally are
defined as � »0�1 …q � >U»0�1 …q and � »0�1 …q � :� »0�1 …:q , respec-
tively. In addition to Boolean semantics, STL admits quantitative
semantics [5, 6], which are formalized by the notion of the robust-
ness degree. The robustness degree of a signal B 2 S with respect
to an STL formula q is a functional d „B� q” recursively defined as:

d „B� ?c „G ”�‘ � C” = „c „B „0”” � ‘”
d „B� ?c „G ”�‘ � C” = „‘ � c „B „0”””
d „B�:q� C” = �d „B� q� C”
d „B� q1 ^ q2� C” = min fd „B� q1� C” � d „B� q2� C”g
d „B� q1 _ q2� C” = max fd „B� q1� C” � d „B� q2� C”g
d „B� q1U»0�1 …q2� C” = maxCD 2»0�1 … fmin fd „B� q2� C” �

minC 02»0�CD ” fd „B� q1� C”g
		

d „B� � »0�1 …q� C” = maxCD 2»0�1 … fd „B� q� C”g
d „B�� »0�1 …q� C” = minCD 2»0�1 … fd „B� q� C”g �

(3)

The robustness degree is sound, i.e., B j= q () d „B� q� C” � 0.

4 Problem Statement
4.1 Kinodynamic Constraints
Let ( = „5 � -�* � G8=8C ” be a dynamical system, where - � R= and
* � R< are the bounded state and control spaces. The state space
- contains obstacles ->1B � - and the free space is denoted by
-5 = - n ->1B . 5 : - �* ! - is a Lipschitz continuous function,
and Ginit is the initial state of the system. The system behavior is
dictated by differential equations of the following form:

⁄G = 5 „G „C”� D „C”” (4)

Where, G „C” 2 -�D „C” 2 * . we denote by G »G8=8C � D… the state
trajectory originating at Ginit obtained by implementing control
policy D. Let h = fD : ’�0 ! * g be the set of all control policies.
The system ( is said to satisfy an STL specificationq under a control
policy D 2 h if the state trajectory starting at G0 satisfies q , i.e.,
G »Ginit� D… j= q .

4.2 Mission Specification
In this work, we focus primarily on the development of a highly
efficient trajectory planner to use in the context of a temporal logic
planning problem. As such, we assume the existence of a candidate
solution, which can be obtained via solving a MILP using a low-
fidelity motion model [2, 27], applying SMT-based reasoning over
an abstract syntax tree representation [3, 16], or by using a logic
such as Time Window Temporal Logic [30]. Typical approaches to
solving plan synthesis with a MILP use low-fidelity motion models
to identify a discrete motion plan, which is then implemented by



Accepted for publication in the ACM International Conference on Hybrid Systems Computation and Control (HSCC), May 2025

Multi-layer Motion Planning with Kinodynamic and Spatio-Temporal Constraints

a continuous motion planner [17]. For non-trivial motion models,
a low-�delity model may be highly inaccurate or produce infeasi-
ble trajectories. Thus, we consider an intermediate speci�cation
consisting of disjoint regions to be visited, each with its own time
intervals. That is, we assume a high-level planner produces a speci�-
cation	 such that for a given signalB,Bj= 	 =) Bj= q. However,
since the high-level planner does not account for kinodynamic
motion plans, satisfaction of the (simpler) speci�cation	 may not
be possible. Our approach is agnostic to how	 is obtained. Thus,
	 is directly part of our problem formulation. Our goal is to �nd
kinodynamic plans over a fragment of STL of the form:

	 =

 
=Û

8=1

k 8
1

!

^ ©
­
«

<Û

9=1

k 8
D=

ª
®
¬

k 8
1 = F»08•18¼¹G2 - 6>0;8º• k 9

D= = F»0•1º ¹G2 - 6>0;9º

(5)

Where,k1•kD= represent bounded, and unbounded goals respec-
tively. Unbounded goals are de�ned over the interval»0•1º .

Problem 3.1:Given a dynamical system( and an STL speci�cation
	 as written in(5), �nd a control policyDsuch that the system satis-
�es 	 under policyD, and the cost function (based on the robustness
metric) for the state trajectory is minimized. It will be necessary to
assume that the problem can be solved using trajectories generated
by piecewise constant control functions. This is a reasonable way
to generate a trajectory using a computational approach [18].

5 Proposed Approach
In this section, we describe how the proposed algorithm �nds a
kinodynamically feasible path that satis�es the speci�cation	 , as
outlined in Algorithm 1. First,CandidatePlans¹	 º enumerates all
possible orders in which the spatial regions can be visited while
adhering to time constraints. Next,GeoPlanner generates a geo-
metric path that visits these regions in the speci�ed order. Finally,
this geometric path is passed to ourLG-SST-STLplanner (modi�ed
SSTplanner [18]) which utilizes the geometric path as a guide for
sampling, optimizing for the robustness value of the formula	 . If
LG-SST-STLreturns a positive robustness value, this indicates that
the found kinodynamic path is valid, and the process concludes.

Algorithm 1: High Level Planner

Input: ( = ¹5 • -• * • G8=8Cº, #<0G , ) <0G , � ¹G•Dº, 	
Output: Optimal Control PolicyD�

1 f " 1• " 2• ”””• "< g  CandidatePlans(	 )
2 for 8 1 to < do
3 f �%• !<0G g  GeoPlanner(" 8)
4 fD• dg  LG-SST-STL(f (• �%• !<0G g)
5 if d � 0 then
6 return u

5.1 Discrete Region Orders
Algorithm 2 comes up with all possible orders of regions that need
to be visited sequentially to satisfy the formula	 . In algorithm
2, lines 2-5, all bounded goals, denoted byk1, are evaluated for
potential time overlaps. If there is no overlap, one region must be

Algorithm 2: CandidatePlans
Input: 	
Output: " 1• ” ” ” • "<

1 2>=BCA08=CB fg
2 for 8= 1 to= do
3 for 9= 1 to= do
4 if no_time_overlap(k 8

1•k 9
1 ) then

5 2>=BCA08=CB f 2>=BCA08=CB•¹8• 9ºg

6 M  fg
7 for " 2 ?4A<¹k1•kD=º do
8 if =>_E8>;0C8>=¹2>=BCA08=CB• "º then
9 M  fM • " g

10 return M

visited strictly before the other, and these orderings are added to
the set of constraints. Subsequently, inAlgorithm 2 , lines 7-9, we
generate all possible permutations of the regions to be visited and
check for any violations of the ordering constraints derived from
the time intervals. If no constraints are violated, the permutation is
added to the set of candidate paths.

This algorithm has a worst-case time complexity ofO¹=!º in
terms of the number of potential candidate paths to be planned
by the motion planner. Nonetheless, as it enumerates all possible
orders, it is complete. Additionally, for complex nonlinear dynamic
models where computing steering functions are intractable, we
argue that alternative methods encoding the full formulaq as a
single cost function in anao planner fail to achieve convergence to
positive robustness, as demonstrated by our experimental results.

5.2 Continuous Spatial Path
The candidate sequence regions" = f - 6>0;1• - 6>0;2• ” ” ” • -6>0;= g, to
be visited, serves as a series of intermediate goals, where- 6>0;1 =
G8=8Cis the initial state and- 6>0;= = G6>0; is the �nal goal. To
construct the lead geometric path�%, we utilize a geometric plan-
ner, such as Rapidly-exploring Random Trees (rrt* ). The path is
generated as the sum of sub-paths, where each sub-path connects
two consecutive intermediate goals,GeoPlan¹- 6>0;8• - 6>0;8̧ 1º for
8= 1• ” ” ” •=� 1, as described inAlgorithm 3 , Line 3. We propose

Algorithm 3: GeoPlanner
Input: "
Output: �%• !<0G

1 f - 6>0;1• - 6>0;2• ” ” ” • -6>0;= g = "
2 - 6>0;1 = G8=8C, - 6>0;= = G6>0;

3 �%  
Í =� 1

8=1 RRT*¹- 6>0;8• - 6>0;8̧ 1º
4 ! <0G  2= � 1

decomposing the global geometric path�% into sub-regions called
Layers. We construct one layer for each subpath¹- 6>0;8• - 6>0;8̧ 1º
and for each subgoal- 6>0;8 for a total 2= � 1 layers. An illustrative
example is shown in Figure 2, where intermediate goals and their
connecting subpaths are structured into layers. These layers de�ne
regions that guide biased sampling, enforce the correct visitation
order of the tree, and enable crossovers when necessary based on
the sequence of regions.



Accepted for publication in the ACM International Conference on Hybrid Systems Computation and Control (HSCC), May 2025

Chatrola et al.

5.3 Kinodynamic Spatial Temporal Path
In this section, we explain in detail the modi�cations we propose
and outline how our framework integrates with thesst [18] planner.
Modi�cations are highlighted ingreen in Algorithm 4 , and the
following subsections explain each modi�cation in detail.

Algorithm 4: LG-SST-STL

Input: ( = ¹5 • -• * • G8=8Cº, #<0G , ) <0G , � ¹G•Dº, �%• !<0G
Output: Optimal Control PolicyD�

1 T = fG8=8Cg; Cost¹G8=8Cº = 0
2 for 8= 1 to #<0G do
3 ! A0=3• GA0=3  SpatialBiasSampler(-• ! <0G )
4 G=40A  NearestNeighbor(T , GA0=3)
5 DA0=3  Sample(* )
6 ) A0=3  Sample(0, ) <0G )

7 G»C¼  G=40A¸
¯ ) A0=3
0 5¹G¹gº•DA0=3º3g

8 if G»C¼ 2- 5 then
9 if dist(G»C¼- �%) � A?A>?then

10 ! ¹G»C¼º  !0~4A�BB86=¹G¹Cºº
11 if j! ¹G=40Aº � ! ¹G»C¼ºj � 1 then
12 newCost Cost¹G=40Aº ¸ � ¹G»C¼•DA0=3º
13 if newCostŸ Cost¹G»C¼ºor G»C¼8 T then
14 AddNode(T , G»C¼)
15 Cost¹G»C¼º  newCost
16 UpdateTree(T , G»C¼)

17 if IsGoalReached(G»C¼, G6>0;) then
18 return ReconstructPath(T , G»C¼),D»C¼

19 return Failure

5.3.1 Biased Sampling.We use the global geometric path�% to
bias the sampling strategy. This strategy con�nes sampling to re-
gions proximal to the global path. To control this proximity, we
introduce a new parameter called thesampler selection radius
(BA), which restricts sampling to a neighborhood around�%. The
sampling process is described inAlgorithm 5 , speci�cally Line 2,
and is illustrated in Figure 2 which is the outer layer shaded in
the color orange. By focusing sampling e�orts along the guidance
path, the planner achieves higher computational e�ciency. This
is because the geometric path provides a partial solution for the
spatial component of the STL speci�cation, signi�cantly reducing
the search space.

Algorithm 5: Spatial Bias Sampler
Input: -• ! <0G
Output: GA0=3• !A0=3

1 ! A0=3  Sample(0• !<0G )
2 GA0=3  BiasSampler(-•BA)

5.3.2 Layer Assignment.The layers assigned to the global path
earlier are now used to guide the planner during sampling and tree
growth. Speci�cally, each sampling iteration selects a layer,! A0=3,
and a sample,GA0=3, within that layer as shown inAlgorithm 5 ,
Line 1. This ensures that the planner grows the tree within the

selected layer, as illustrated in Figure 2. Layers are also assigned
to each node in the planner's tree based on proximity to the corre-
sponding layer of�%. This assignment is described inAlgorithm 6 ,
Line 1. A new node,G»C¼, is only added to the tree if it belongs to
a layer consecutive to its parent node, as enforced inAlgorithm 4 ,
Line 11. This restriction ensures that the planner maintains con-
sistency with thestl speci�cation and avoids undesired behavior
by connecting with incorrect nodes in the tree.

Algorithm 6: Layer Assignment

Input: G»C¼
Output: ! ¹G»C¼º

1 ! ¹G»C¼º  arg min; 2 f 1•”””•!<0G g dist¹G»C¼• �%; º

Figure 2: Layer Assignment and connection of nodes, the
magni�ed image shows the node that are rejected.

5.3.3 Propagation Radius.We introduce a new parameter, the
propagation allowed radius ( A?A>?), which limits the planner's
growth to remain within a de�ned radius t the global path�%. This
restriction is enforced inAlgorithm 4 , Line 9. If a propagated node
G»C¼exceedsA?A>?, it is rejected, as shown in Figure 3. By limiting
deviations from the global path, the propagation radius ensures that
the planner remains focused on regions critical for satisfyingstl
constraints. AdjustingA?A>?can help balance between exploration
and adherence to the guidance path.

Figure 3: The �gure shows rejection of nodes that deviate
more than allowed by the propagation radius



Accepted for publication in the ACM International Conference on Hybrid Systems Computation and Control (HSCC), May 2025

Multi-layer Motion Planning with Kinodynamic and Spatio-Temporal Constraints

5.3.4 Satisfy the Temporal constraints (Cost Function).The above
methodology will help us create a kinodynamic path that will satisfy
all the spatial components of thestl formulae by design, and it will
additionally be time-parameterized. Cost functions have been used
before in many di�erent scenarios, such as [11, 19, 31]. We will
be using a simple cost inspired by [19] that will ensure that as it
decreases, thestl speci�cation will be satis�ed. We de�ne a simple
cost function� that includes the robustness of anstl speci�cation.
For calculating cost after each new node that is added to the treeT ,
we make the cost compute recursive, which helps reduce overhead.

�d¹x8•¹5¹b8º � ` º• Cº =

(
` � 5¹b8¹Cºº � =�

5¹b8¹Cºº � ` � =�
(6)

�d¹x8• q1 ^ q2• Cº =

8>>>>>>>><

>>>>>>>>
:

¢ if �d¹x8• q1• Cº and

�d¹x8• q2• Cº = ¢

�d¹x8• q1• Cº if �d¹x8• q2• Cº = ¢

�d¹x8• q2• Cº if �d¹x8• q1• Cº = ¢

min¹ �d¹x8• q1• Cº• �d¹x8• q2• Cºº

(7)

�d¹x8• � »0•1¼q• Cº =

8>>><

>>>
:

¢ if CŸ 0 or C¡ 1

�d¹x8• q• Cº if C= 0

max¹ �d¹x8• q• Cº• �dparent¹x8• � »0•1¼qºº
(8)

�d¹x8• �q• Cº = max¹ �d¹x8• q• Cº• �dparent¹x8• �q ºº (9)

Hereinafter, we de�ne the robustness value�d associated to a node
x8 in T . Since a trajectory until a given node in the LG-SST-STL
tree might be partially testable against the STL speci�cation, we
recursively de�ne the robustness of (partial) trajectories until node
x8. Consider a simple speci�cation like� »4•5¼¹G¡ 2º. It is not pos-
sible to assess the trajectory's robustness against the speci�cation
until the �rst observation of the trajectory for timeC= 4 has been
made. As highlighted in [4], we use and maintain a syntax tree
of STL formula in memory, augmented with a robustness value�d
associated with the nodes inT . Temporal operators are equipped
with robustness values�d for nodesx8 2 X, that are stored. Further,
we de�ne by �dparent : X � � � ! R [ f ¢g the �d value of a tempo-
ral operator in the syntax tree of the speci�cation, for the parent
of nodex8 in the LG-SST-STL tree, where¢ is a dummy symbol
used to provide no real value to a formula, the robustness of which
cannot be stated for a given trajectory (i.e., for trajectories shorter
than the lower bound of the interval of a temporal operator). In
the following, �dparent is called to compute the actual value of�d for
nodex8 (since �d depends on the value of�d for the parent node of
x8 ). The robustness value�d : X � � � � N ! R [ f ¢gassociated to
a nodex8 in T is given by the recursive function:

Timed temporal operators, the design of�d only uses the evalua-
tion of predicates for the relevant time intervals. Outside of these,
predicates are not evaluated, hence are not re�ected in the calcula-
tion of the cost function. Also, the de�nition of�d as such enables
an easy computation of themin andmaxin the case of temporal
operators: for a given nodex8, the whole trajectory until nodex8
doesn't need to be tested, but only the spatial coordinates of node

x8 and the value of�d of the temporal operator for the parent of
x8, which leads to lower computational complexity. We now de�ne
��d : X � � � � N ! R, that will be directly called by the LG-SST-STL
cost function:� ¹x8º = �q ¹x8º = ��d ¹x8• q• Cº = � min ¹ �d ¹x8• q• Cº •0º

6 Case Studies
We validate our approach through simulations conducted using
the Open Motion Planning Library (OMPL)[29], for our imple-
mentation [13] . Our experiments encompass three environments,
each designed to test an Ackermann-steered vehicle navigating in
(� ¹2º con�guration space, where the state vectorx = »G•~• \¼) 2
R2 � S1 represents the vehicle's position and orientation. The
system dynamics follow the standard Ackermann-steering model:
¤G= Ecos¹\ º• ¤~ = Esin¹\ º• ¤\ = E

! tan¹Xº whereEis the linear
velocity, ! is the wheelbase length, andX 2 »�X<0G• X<0G ¼is the
steering angle. Each environment presents unique challenges and
incorporates di�erentstl speci�cations. For the experiments, the
intermediary goal thresholdYis set to0”3m, ensuring the vehi-
cle comes su�ciently close to each goal region. We evaluate our
approach against the baseline SST planner with STL cost using
OMPL's benchmarking tools [21]. The experimental evaluation
consists of 60 runs for each planner across three distinct environ-
ments. For each run, we analyze the evolution of theSTLcost �
over a time horizon of 300 seconds, along with the computational
resources required by each planner. The comparative results of both
performance metrics are presented in Figure 4.

Experiment 1: The Objective of Experiment 1 is to evaluate
the capability of the SST-STL planner and the proposed LG-SST-
STL planner in sequentially achieving two unbounded spatial goals
without incorporating time bounds into the cost function. This
experiment assesses the planners' ability to generate feasible paths
that satisfy the givenSTLspeci�cations.

	 = F
�
3¹¹G•~º � ¹ 5•4ºº � Y

�
^ F

�
3¹¹G•~º � ¹ 10•4ºº � Y

�

As depicted in Figure 4, both the SST-STL planner and the LG-SST-
STL planner successfully converged to feasible solutions, generating
paths that satisfy the speci�ed STL fragment.

Experiment 2: consists of four sequential, time-bounded goals
designed to evaluate the planner's ability to handle temporal con-
straints in navigation in presence of obstacle

	 =F»0•3¼
�
3¹¹G•~º � ¹ 0”5•4ºº � Y

�
^

F»6•20¼
�
3¹¹G•~º � ¹ 5•4ºº � Y

�
^

F»20•40¼
�
3¹¹G•~º � ¹ 10•4ºº � Y

�
^

F»35•65¼
�
3¹¹G•~º � ¹ 10•1ºº � Y

�
•

As shown in 4B, thesst planner with stl cost fails to �nd a
path that meets all requirements. The planner opts for a longer
path around the obstacle. This ine�ciency prevents the planner
from reaching some goals within respective time bounds, thus only
partial satisfying STL. In contrast, theLG-SST-STLplanner demon-
strates signi�cant improvements. By selecting the shortest route
to Goal 1, it satis�es the time constraint and sequentially meets
the deadlines for Goals 2 and 3. Notably, this approach requires ten
times fewer graph states than thesst baseline.

Experiment 3: In this experiment, we demonstrate the planner's
ability to handle crossovers. This capability is achieved through



Accepted for publication in the ACM International Conference on Hybrid Systems Computation and Control (HSCC), May 2025

Chatrola et al.

A) Experiment 1

SST-STL LG-SST-STL

B) Experiment 2 C) Experiment 3

Figure 4: Comparison of the SST-STL and LG-SST-STL planners across three experiments. The middle row displays the average
best cost achieved by each planner over time. The bottom row compares the number of states in the graph.

our layer based strategy, which restricts node connections to ad-
jacent layers, effectively addressing the challenges posed by loops
in path planning. The environment includes multiple goals with
overlapping time bounds, creating a scenario where the order of
visiting certain goals does not impact the overall satisfaction of the
temporal logic specification. Due to the overlapping time bounds
of multiple goals, the order in which these goals are visited is inter-
changeable, provided that each is reached within its time bounds.
This results in multiple feasible sequences, and the planner must
consider all permutations to find an optimal path.

	 =F»0�2…
�
3 „„G�~” � „0�5� 4”” � Y

�
^

F»6�20…
�
3 „„G�~” � „5� 4”” � Y

�
^

F»20�30…
�
3 „„G�~” � „4� 1”” � Y

�
^

F»25�90…
�
3 „„G�~” � „1� 1”” � Y

�
^

F»30�120…
�
3 „„G�~” � „1�25� 3�5”” � Y

�
^

F»35�150…
�
3 „„G�~” � „4� 6”” � Y

�
�

Even though our method needs to be run for each of 3! = 6
permutations, it still requires less time and converges faster than
the baseline planner. Our layer-guided SST planner efficiently navi-
gates through these permutations by leveraging the geometric path,
which reduces the search space and computational complexity.

7 Conclusion
We developed a new approach to motion planning that efficiently
handles spatiotemporal constraints. Our experiments demonstrated
that our method significantly reduces computation time while han-
dling complex scenarios with time-bounded goals. Notably the
proposed method, can even produce crossover paths, if required
by the specification. Future work will explore more expressive STL
constraints, dynamic obstacles, and multi-robot systems.

Acknowledgments
The authors thankMichael Da Silva for his help in creating the
diagrams that appear in this manuscript.

References
[1] Fernando S Barbosa, Daniel Duberg, Patric Jensfelt, and Jana Tumova. 2019.

Guiding Autonomous Exploration With Signal Temporal Logic. IEEE Robotics
and Automation Letters 4, 4 (oct 2019), 3332–3339. https://doi.org/10.1109/lra.
2019.2926669

[2] Calin Belta and Sadra Sadraddini. 2019. Formal methods for control synthesis:
An optimization perspective. Annual Review of Control, Robotics, and Autonomous
Systems 2, 1 (2019), 115–140.

[3] Gustavo A Cardona, Kevin Leahy, Makai Mann, and Cristian-Ioan Vasile. 2023.
A flexible and efficient temporal logic tool for python: PyTeLo. arXiv preprint
arXiv:2310.08714 (2023).

[4] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin,
Garvit Juniwal, and Sanjit A. Seshia. 2015. Robust Online Monitoring of Signal
Temporal Logic. (2015). arXiv:1506.08234 [cs.SY] https://arxiv.org/abs/1506.
08234

[5] Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic
over real-valued signals. In International Conference on Formal Modeling and

https://doi.org/10.1109/lra.2019.2926669
https://doi.org/10.1109/lra.2019.2926669
https://arxiv.org/abs/1506.08234
https://arxiv.org/abs/1506.08234
https://arxiv.org/abs/1506.08234

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Statement
	4.1 Kinodynamic Constraints
	4.2 Mission Specification

	5 Proposed Approach
	5.1 Discrete Region Orders
	5.2 Continuous Spatial Path
	5.3 Kinodynamic Spatial Temporal Path

	6 Case Studies
	7 Conclusion
	Acknowledgments
	References

