
Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

Comparing Reconstruction- and Contrastive-based Models
for Visual Task Planning

Constantinos Chamzas*1, Martina Lippi*2, Michael C. Welle*3,
Anastasia Varava3, Lydia E. Kavraki1, and Danica Kragic3

Abstract— Learning state representations enables robotic
planning directly from raw observations such as images. Most
methods learn state representations by utilizing losses based
on the reconstruction of the raw observations from a lower-
dimensional latent space. The similarity between observations
in the space of images is often assumed and used as a proxy for
estimating similarity between the underlying states of the sys-
tem. However, observations commonly contain task-irrelevant
factors of variation which are nonetheless important for re-
construction, such as varying lighting and different camera
viewpoints. In this work, we define relevant evaluation metrics
and perform a thorough study of different loss functions for
state representation learning. We show that models exploiting
task priors, such as Siamese networks with a simple contrastive
loss, outperform reconstruction-based representations in visual
task planning.

I. INTRODUCTION

Learning of low-dimensional state representations from
high-dimensional observations such as images have gained
significant attention in robotics [1], [2]. For complex manip-
ulation planning tasks, this approach is a viable alternative
since analytic approaches may be computationally expensive
or impossible to define. Existing approaches are generally
based on an implicit assumption that similar observations,
close in the image space, correspond to similar system states.
However, the same underlying state may be related to very
different observations due to other factors of variation, such
as different views or background of the scene, see Fig. 1.
This is especially true in task planning, which we focus
on, where states are typically discrete and their observations
may be captured in very different time intervals, leading to
the natural occurrence of task irrelevant factors of variation.
Similar considerations also hold for task and motion planning
(TAMP) settings [3].

To address this, it is crucial to identify the task-relevant
factors of variation. A step in this direction is done by [4],
where an agent interacts with the environment and tries to
disentangle the controllable factors of variation. However, if
data is being collected in realistic scenarios, irrelevant factors
of variation may occur that are difficult to control.

*Contributed equally (listed in alphabetical order)
This project has been supported in part by NSF GRFP 1842494 (CC) and
NSF 2008720 (LEK)
1 Rice University, 6100 Main St, Houston, TX 77005, USA chamzas,
kavraki@rice.edu
2Roma Tre University, Via Ostiense, 133B, 00154 Roma RM, Italy
martina.lippi@uniroma3.it
3KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm,
Sweden mwelle, varava, dani@kth.se

Fig. 1: Examples of visually different observations (different
views) of the same state (arrangement of the boxes).

Although several solutions exist in literature, a unified
analysis of representation losses and their influence to the
performance of learned representations for high-level visual
task planning is currently missing. In this work, we perform
a systematic comparison of different representation learning
methods which can possibly leverage task priors in quasi-
static tasks. To this aim, we also design and collect datasets
where the underlying states of the system do not uniquely
correspond to observations (images). We study a box manip-
ulation task on a real robotic system as well as a simulated
shelf arrangement task. In all tasks, different task-irrelevant
factors, such as different viewpoints of the same scene
or “distractor” objects, are present. Our work makes the
following contributions: i) We introduce evaluation metrics
and provide a systematic study for assessing the effect of
different loss functions on state representation. Robotic tasks
on both real hardware and simulation are analyzed. ii) We ex-
amine a simple data augmentation procedure for contrastive-
based models. iii) We show how task priors in contrastive-
based models combined with simple data augmentations
can lead to the best performance in visual task planning
with task-irrelevant factors of variation and demonstrate the
performance of the best derived representations on a real-
world robotic task. iv) We create and distribute datasets for
comparing state representation models1.

II. RELATED WORK

State representation learning from high-dimensional data
has been successfully used in a variety of robotic tasks.

1 https://state-representation.github.io/web/

https://state-representation.github.io/web/

Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

As shown in Table I, the used loss functions are usually a
combination of the reconstruction, Kullback–Leibler (KL)-
divergence, and contrastive loss functions. A common ap-
proach to use learned state representations is through learned
forward dynamic models as in [5], [6], [7], [8]. These
dynamic models predict future observations (images) and are
trained to minimize the pixel distance between the observed
image and the decoded predicted observation. Among these
works, [5] also exploits a KL loss to regularize the latent
space. Future rewards and actions are predicted instead in [9],
and the image reconstruction loss is solely used to regularize.
Since in many cases predicting full images is not practical,
some approaches attempt to remove task-irrelevant informa-
tion from the predicted images. In [10], the residual of goal
and the current state is reconstructed which contains more
relevant information comparing to a raw image. Similarly, in
[11] images are transformed through specialized layers that
enhance spatial features, such as object locations. Learned
representations leveraging reconstruction loss have also been
used in specific robotic applications, such as [12] for fabric
manipulation and [13] for pendulum swing up.

As shown in Table I, all the aforementioned methods rely
on the reconstruction loss. However, in many real scenarios,
full images might contain redundant information, making the
reconstruction loss not applicable. Inspired by the revival of
contrastive methods in computer vision [14], some recent
works rely on contrastive losses to learn efficient state repre-
sentations. The works in [2], [15], [16] augment pixel frames
through transformations and use a forward momentum en-
coder to generate positive and negative examples. These
examples are then exploited to learn state representations
directly in the latent space without the need for a decoder.
In [17], a purely contrastive loss is used to learn robotic states
from video demonstrations where states that are temporally
close are considered similar. In addition, the authors of
[18] remove task-irrelevant information by adding distractors
during simulation and considering such states similar in their
contrastive loss formulation. Contrastive-like losses have also
been formulated using task or robotic priors [19] such as
slowness [20]. The latter has been applied in reinforce-
ment learning [21] with visual observations, and humanoid
robotics state representation [22]. A no-action/action prior
was also used in our previous work [23], which was used to
formulate a combined reconstruction, KL, and contrastive
loss. Here, we leverage the same task prior of [23] as
explained in Sec. III.

The vast majority of the aforementioned methods are
concerned with continuous control tasks, whereas in this
work we are focusing on quasi-static states tailored towards
long-horizon high-level planning [1]. In detail, we take
representative models employing different loss functions and
perform a thorough study by analyzing their performance in
robotic planning tasks with and without task priors. Such
discrete state representations have been learned in literature
by object-centric or compositional models like [16], [24],
however we do not assume any structural relations between
observations.

Related works Recon. KL Contr.
[6], [7], [8], [9], [12], [13] 3

[5], [10], [11], [25] 3 3

[2], [15], [16], [17], [18] 3

[23] 3 3 3

TABLE I: Overview of loss functions (reconstruction, KL
divergence and contrastive) used by state-of-the-art methods.

III. PROBLEM FORMULATION

Our objective is to define appropriate state representations
for visual task planning given high-dimensional observations
provided as images. Let O be the observation space and Z
be a low-dimensional state space, also referred to as latent
space. The goal is to define a mapping function ξ : O → Z
which extracts the low-dimensional representation z ∈ Z
given a high-dimensional observation o ∈ O. We consider
that task-irrelevant factors can be present in the observations
which cause them to be possibly visually dissimilar even if
they contain the same underlying states.

An ideal mapping function ξ∗ should be able to per-
fectly capture the underlying states of the system despite
possible task-irrelevant factors. This means that, given two
observations oi and oj containing the same state, it holds
ξ∗(oi) = ξ∗(oj), i.e., they are mapped into the same latent
encoding. We aim to understand how to model ξ such that
it is as close as possible to ξ∗ when task-irrelevant factors
are present in O.

Although a perfect mapping ξ∗ might not be achievable, a
good approximation should be able to properly structure the
latent space such that encodings associated with the same
states are close by, while encodings that are associated with
different states are well separated in the latent space. This
implies that the encodings should be clustered in the latent
space such that each cluster is associated with a possible
underlying state of the system. Note that if such clustering
is achieved, task planning can be easily solved by properly
connecting the clusters when an action is allowed between
the respective states of the system. Therefore, better mapping
results in improved clusters and requires an easier planning
algorithm. An illustrative example is provided in Fig. 2,
where three latent spaces Z∗,Z1,Z2, obtained with different
mapping functions, ξ∗, ξ1, ξ2, are shown. Considering that
observations (top row) in the same colored box contain
the same underlying state, it can be observed that i) the
latent space Z∗ (bottom left) is optimal since observations
containing the same states are mapped exactly into the same
latent encoding, ii) a sub-optimal latent space Z1 (bottom
middle) is obtained since the latent encodings are properly
clustered according to the states of the system, iii) a very
hard-to-use latent space Z2 (bottom right) is obtained where
the encodings are not structured according to the states.

Training Dataset: To model the mapping function, we as-
sume task priors are available to build the training dataset. In
detail, a training dataset To is composed of tuples (oi, oj , s)
where oi, oj ∈ O are observations of the system, and
s ∈ {0, 1} is a signal, obtained from task priors, specifying

Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

Fig. 2: Examples of mapping functions ξ∗, ξ1, ξ2 (arrows) from observation
space O (top row) to latent spaces Z∗,Z1,Z2 (bottom row). Boxes arrangement
represents the system state and images marked with variations of the same color
contain the same state.

Fig. 3: Example of action (left) and
similar (right) pairs. We consider
the boxes interchangeable (only the
resulting arrangement matters).

whether the two observations are similar (s = 1), i.e., they
correspond to the same state and ξ∗(oi) = ξ∗(oj), or whether
an action occurred between them (s = 0), i.e., they represent
consecutive states, implying that oi and oj are dissimilar
and ξ∗(oi) 6= ξ∗(oj). An action represent any high-level
operation as in [1], e.g., pick and place, pushing, and pouring
operations. We refer to the tuple as a similar pair when
s = 1, and as an action pair when s = 0. In addition, the
encoded training dataset composed of tuples (zi, zj , s), with
zi = ξ(oi) and zj = ξ(oj), is denoted by Tz .

Note that in both similar and action pairs task-irrelevant
factors can change in the observations oi, oj , i.e., it generally
holds oi 6= oj , while task-relevant factors only change
through actions in action pairs. Moreover, no knowledge of
the underlying states of the training observations is assumed.
Examples of action and similar pairs are shown in Fig. 3
for a box manipulation task (with interchangeable boxes), as
detailed in Sec. VII. The training dataset can be generally
collected in self-supervised manner. Indeed, action pairs can
be obtained by randomly performing high-level actions with
the environment similar to [1] and recording the respective
consecutive observations. Regarding similar pairs, they can
be obtained, for example, by recording observations in the
tuple with a certain time separation, leading to the occurrence
of different lighting conditions and/or the presence of further
irrelevant objects in the scene, or, as in our experiments, by
swapping objects if they are interchangable for the task.

Data Augmentation: Inspired by the training procedure
in [26], we consider a synthetic procedure to generate an
additional training dataset T o from To. Let OT be the set
of all observations in To. The basic idea is that by randomly
sampling pairs of observations in the dataset, they will likely
be dissimilar. Therefore, T o is first initialized to To. Then, for
each similar pair (oi, oj , s = 1) ∈ To, we randomly sample n
observations {os1, ..., osn} ⊂ OT in the dataset and define the
tuples (oi, osk, s = 0), k = 1, .., n, which are added to T o. In
this way, for each similar pair, n novel tuples are introduced
in T o with respect to To. We experimentally validate that
this procedure allows to improve the latent mapping despite
possible erroneous tuples in T o, i.e., novel tuples for which
it holds ξ∗(oi) = ξ∗(osk).

IV. LATENT MAPPING MODELING

We employ and compare different unsupervised and prior-
based, i.e., using the similarity signal s, models as follows.
i) The classic Principal Component Analysis (PCA)
method [27] is used as an unsupervised baseline method. It
obtains the latent mapping by finding the eigenvectors with
the highest eigenvalue from the dataset covariance matrix.
ii) Auto-Encoder (AE) [28] is considered as another unsuper-
vised approach. AE is composed of an encoder and a decoder
network trained jointly to minimize the Mean Squared Error
(MSE) between the input o and decoded output õ:

Lae(o)=(o− õ)2.

iii) A standard β-Variational Auto-Encoder (VAE) [29] is
considered as an additional unsupervised model. Similarly
to the AE, the β-VAE consists of an encoder and a decoder
network which are jointly trained to embody the approximate
posterior distribution q(z|o) and the likelihood function
p(o|z) providing generative capabilities. The following loss
function is minimized:

Lβ−vae(o)=Ez∼q(z|o)[log p(o|z)] + β ·DKL (q(z|o)||p(z))

with z the latent variable, p(z) the prior distribution realized
as a standard normal distribution and DKL(·) the KL diver-
gence.
iv) The similarity signal can be exploited through a Pairwise
Contrastive (PC) loss [23], encouraging the encodings of
action pairs to be larger than a certain distance while
minimizing the distance between similar pairs. This loss is
used to augment the standard AE loss as follows [30]:

Lpc−ae(oi, oj , s)=
1

2
(Lae(oi) + Lae(oj)) + αLpc(oi, oj , s)

with α a hyperparameter and Lpc(oi, oj , s) defined as

Lpc(oi, oj , s)=

{
max(0, dm − ||zi − zj ||21) if s = 0

||zi − zj ||21 if s = 1
(1)

where dm is a hyperparameter denoting the minimum dis-
tance that is encouraged between encodings of the action
pairs. We denote the resulting model as PC-AE.
v) Similarly to the PC-AE, the task priors can also be used
to combine the β-VAE loss with the PC loss, leading to the

Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

Model Recon. loss KL loss Contr. loss
PCA
AE 3

β-VAE 3 3

PC-AE 3 3

PC-VAE 3 3 3

PC-Siamese 3

CE-Siamese 3

TABLE II: Summary of the considered models with respect
to their loss functions.

following loss function [23]

Lpc−vae(oi, oj , s) =
1

2
(Lβ−vae(oi) + Lβ−vae(oj))

+ γLpc(oi, oj , s)

with γ a hyperparameter. We denote this model as PC-VAE.
vi) A pure contrastive-based model is then considered which
is a Siamese network with pairwise contrastive loss [31],
referred to as PC-Siamese. This model structures the latent
space such that it minimizes the pairwise distance between
similar pairs and increases it between dissimilar pairs. As
dissimilar pairs, the action pairs are used (s = 0). This model
is based on the sole PC loss Lpc(oi, oj , s) in (1), i.e., it only
relies on the similarity signal while no use of reconstruction
loss is made.
vii) A further Siamese network model is considered with
different contrastive loss function. In particular, the following
normalized temperature-scaled Cross Entropy (CE) loss [26],
[32] is leveraged which minimizes the cross-entropy between
similar pairs using the cosine similarity: This model relies on
the following normalized temperature-scaled cross-entropy
loss [26], [32]:

Lce(oi, oj)=− log

(
e(sim(zi,zj)/τ)∑2N

k=1 1k 6=ie
(sim(zi,zk)/τ)

)
(2)

where sim(u, v) = u>v/‖u‖‖v‖ is the cosine similarity, 1
is the indicator function, τ is the temperature parameter and
N is the number of similar pairs that are given in each batch.
The resulting model is denoted by CE-Siamese. We use the
training procedure in [26] where, for every similar pair, the
rest 2(N − 1) examples are considered dissimilar as in (2).
Models Summary: As summarized in Table II, the con-
sidered models allows to cover a wide range of losses. The
PCA model is employed as a simple baseline to show that the
tasks at hand have adequate complexity and cannot be solved
with a PCA model. The AE and β-VAE models are mostly
based on the reconstruction loss and therefore implicitly
assume that a visible change in the observations corresponds
to a state change. The latter models are then augmented in
the PC-AE and PC-VAE models with a pairwise contrastive
loss which exploits the task priors ameliorating the visual
similarity assumption. In addition, PC-Siamese and CE-
Siamese only rely on a contrastive loss without generative
capabilities. However, the latter are often not required for
downstream tasks. For the sake of completeness, in Sec. VIII,
we also compare to the case in which no model is used, and

raw observations are directly exploited.

V. LATENT PLANNING

As we are interested in ultimately use learned represen-
tations for task planning, we leverage planning in the latent
space as a quality measure itself of the representation, as
detailed in the following section. We resort to our latent
space planning method from [23] that builds a graph structure
in the latent space, called Latent Space Roadmap (LSR).
Algorithm 1 shows a high level description of the LSR
building procedure.

Algorithm 1 Adapted LSR building [23]
Require: Dataset Tz , min cluster size m

G = build-reference-graph(Tz) # Phase 1
Cz = HDBSCAN-clustering(Tz , m) # Phase 2
LSR = build-LSR(G, Cz) # Phase 3
return LSR

The basic idea is to first build a reference graph using the
encodings of action and similar pairs in Tz (Phase 1), i.e.,
nodes are created for each encoding and they are connected
in case of action pairs. Next, in Phase 2, the latent space is
clustered. We substitute the ε-clustering used in [23] with the
HDBSCAN [33] which only requires the minimum samples
per cluster m to be set. The LSR is then built in Phase 3
where each cluster is represented by a node that embodies
the underlying state and clusters are connected through edges
if they are one action apart, i.e., they contain encodings of
action pairs. To use the LSR for planning, we first encode
the start and goal observations with the model of interest and
then select the respective closest nodes in the LSR as start
and goal nodes of the path. Finally, we find the shortest paths
from the start node to the goal one. Note that the objective
of the planning is to produce a sequence of actions that lead
from start to goal states. No decoded images are then needed
and the LSR can be built in the latent space generated by
any model in Sec. IV.

VI. REPRESENTATION EVALUATION METRICS

To evaluate the performance of the different latent map-
ping models, we propose two types of metrics. First, as stated
in Sec. III, the structure of the latent space can be assessed
through clustering, i.e., a good latent space should be easy
to cluster. Second, the latent space should be suitable for
task planning - a good latent space should result in easier
planning. Thus, we also evaluate the planning performance
of learned representations.

A. Clustering metrics

Homogeneity & Completeness: Given the ground truth
states, the homogeneity score [34], denoted by hc, measures
the purity of the created clusters, i.e., that each cluster con-
tains elements from the same state. Completeness, denoted
by cc, measures the preservation of the states in clusters,
i.e., that each state is assigned to the same cluster. Both
the metrics have range [0, 1], with 1 being the best value.
Assigning all elements in different clusters would results in

Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

hc = 1 and cc = 0, while assigning all elements in the same
cluster would results in hc = 0 and cc = 1. These quantities
are calculated based on cross-entropy as formulated in [34].
Mean silhouette coefficient: The silhouette coefficient [35],
denoted by sic, is defined for each sample i and, in contrast
to the previous metrics, does not rely on ground truth labels.
Let diintra be the mean distance between sample i and all the
other points in the same cluster and let diclosest be the mean
distance between sample i and all other points in the closest
cluster. The silhouette coefficient for sample i is defined as:

sic =
(diclosest − diintra)

max(diintra, d
i
closest)

which can assume values in [−1, 1], with higher values
indicating dense and well-separated clusters. We report the
mean silhouette coefficient sc over all samples.

B. Planning Evaluation

To assess the planning performance achieved through the
LSR, we evaluate both graph structure and the obtained start
to goal paths. We define the true representative state for each
node in the LSR as the state that is contained the most. The
following metrics are considered:
Number of Nodes: It is the number of nodes in the LSR
and is denoted by |V|. This number should ideally be equal
to the number of possible underlying states of the system.
Number of Edges: It represents the number of edges that
are built between nodes in the LSR and is denoted by |E|. In
the case of optimal latent mapping and graph, the number of
edges should be equal to the number of possible transitions
between states of the system.
Correctness of the Edges: It is denoted by ce and quantifies
how many nodes are improperly connected in the LSR. In
detail, it is defined as the number of legal edges, i.e., the
edges associated to allowed state transitions according to the
task rules, divided by the total number of edges. This score
has range [0, 1], with 1 being the best value.
Path Metrics: To evaluate the latent planning capabilities,
we evaluate the correctness of the shortest paths between
random novel start and goal observations (taken from holdout
datasets). We consider 1000 different start and goal obser-
vations and evaluate the percentage that all found paths are
correct, denoted by % all, and the percentage that at least
one path is correct, denoted by % any.

VII. VALIDATION SETTING

Two tasks are considered: a box manipulation task on
a real robotic system, and a simulated shelf arrangement,
in Unity [36] environment. An additional simulated box
stacking task can be found in our preliminary workshop
paper [37] and is not reported here for the sake of brevity.
It is worth highlighting that the goal of this work is not
to solve these tasks in an innovative manner, but rather to
gain general insights that can be transferred to cases where a
determination of the exact underlying states is not possible.

In each task, the task-relevant objects are interchangeable
– i.e., swapping two objects results in the same state. Their

Fig. 4: a) Box manipulation dataset with two viewpoints.
b) Shelf arrangement dataset with the task relevant objects
(top object row) and the five distractor objects (bottom object
row).

arrangement in the scene specifies the underlying state of
the system. Other objects that are irrelevant for the task,
referred to as distractor objects, can be present in the
observations. The objective of all tasks is to plan a sequence
of states to arrange the relevant objects according to a goal
observation. Transitions between states – i.e., actions, can
be then retrieved through the LSR [23]. All datasets are
available on the website1.
Box Manipulation: The setup of this real-world case study is
shown in Fig. 4a). The task is composed of four interchange-
able boxes, and each box can only move to adjacent tiles in a
3×3 grid. The robot is tasked with moving the boxes to the
state of the goal image. This task has 126 possible states with
420 allowed state transitions. Two different viewpoints are
considered to capture the scene and three datasets are built
as follows: i) BMs, where all the observations are taken
from the side view (in orange in Fig. 4), ii) BMt, where
the observations are only taken from the top view (in blue
in Fig. 4), and iii) BMst, where views are randomly picked
from the side or top view. Images have naturally occurring
task-irrelevant factors such as distractor objects changing in
the background (side view), as well as out-of-focus images.
In Fig. 4a) the mean image of all training images for side
and top view are depicted. In the following, we report the
considered self-supervised data collection procedure.

Real world Training. As actions, we employ pick and place
operations realized by the following sequence: moving the
robot, through a motion planner, to the pick location, closing
the gripper, moving to the place location, and opening the
gripper. To generate an action pair, the robot performs a
random action – moves a box to an adjacent tile. To create
similar states, it swaps two boxes. The swapping is simply
three consecutive pick and place operations. Before executing
each action the robot needs to check that the preconditions
of that action are true, e.g., pick location is occupied and
place location is empty. This can be verified by moving and
closing the gripper to the pick and place locations. If the
gripper fully closes (sensed through the gripper encoder),
the location is empty, otherwise a box is present and can
be picked. A similar verification could be achieved with a
depth camera. This formulation is consistent with the high-

Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

Models
Dataset BMt

|V| hc cc sc |E| ce
Paths scores

% all % any
- 1016 0.92 0.92 0.79 583 0.78 0.0 0.0
PCA 496 0.75 0.78 0.52 452 0.52 0.0 0.0
AE 233 0.49 0.57 0.29 234 0.27 0.0 0.0
β-VAE 539 0.85 0.85 0.51 422 0.62 0.0 0.0
PC-AE 246 0.54 0.6 0.3 258 0.28 0.0 0.0
PC-VAE 570 1.0 1.0 0.58 488 1.0 29.9 29.9
PC-Sia. 389 0.99 1.0 0.52 458 0.97 47.37 57.3
CE-Sia. 150 1.0 1.0 0.67 325 1.0 98.3 98.3

Dataset BMt

PC-AE 218 0.99 1.0 0.71 375 0.98 72.12 82.5
PC-VAE 395 1.0 1.0 0.56 461 1.0 89.7 89.7
PC-Sia. 133 1.0 1.0 0.9 314 1.0 97.7 98.2

Models
Dataset BMst

|V| hc cc sc |E| ce
Paths scores

% all % any
- 710 0.83 0.83 0.5 496 0.58 0.0 0.0
PCA 400 0.59 0.62 0.46 453 0.25 0.0 0.0
AE 554 0.87 0.88 0.56 454 0.69 0.0 0.0
β-VAE 407 0.72 0.74 0.44 361 0.38 0.0 0.0
PC-AE 318 0.62 0.91 0.61 325 0.47 0.0 0.0
PC-VAE 381 0.84 0.85 0.42 295 0.65 0.1 0.1
PC-Sia. 289 0.96 0.96 0.4 312 0.92 26.34 27.5
CE-Sia. 232 0.99 0.99 0.41 354 0.99 78.39 78.7

Dataset BMst

PC-AE 158 0.93 0.98 0.5 310 0.79 26.01 36.4
PC-VAE 164 0.89 0.94 0.36 198 0.77 7.39 9.2
PC-Sia. 136 0.99 0.99 0.45 282 0.98 69.37 72.4

TABLE III: Evaluation results for the latent mapping models and raw observations on BMt and BMst (top) and their
augmented versions (bottom) BMt and BMst for the box manipulation task. Best results in bold.

level actions in [1]. Using this procedure 2800 training data
samples with 1330 action pairs were collected in a self-
supervised manner by randomly performing actions. Note
that no access to the underlying state nor human labeling
is required to generate this dataset. See the supplementary
video for more details.
Shelf Arrangement: As depicted in Fig. 4b), the scene of
the shelf arrangement task is composed of two shelving
units with a total of four shelves, and a table where four
objects can be placed. Four task-relevant objects – a bowl,
a pot, a mug and a plate (shown in the figure) – are present
in the scene. This task has 70 possible states and 320
possible transitions. In addition, distractor objects (bottom
right part of Fig. 4) can be present on the shelves and
change their position. Two datasets are thus defined: i) SA0d,
that contains the four relevant objects and zero distractor
objects (2500 tuples with 1240 action pairs), ii) SA5d, that
contains all five distractor objects with each distractor having
a probability of 0.8 to appear on the shelf (2500 tuples with
1277 action pairs).

We trained each of the seven models in Sec. IV (PCA, AE,
β-VAE, PC-AE, PC-VAE, PC-Siamese, and CE-Siamese)
with the datasets of the above defined tasks (BMs, BMt,
BMst for box manipulation; SA0d, SA5d for shelf arrange-
ment) as well as their augmented versions (BMs, BMt,
BMst, SA0d, SA5d), with n = 1 in Sec. III. The evaluation
was performed on respective holdout datasets composed of
334 and 2500 novel tuples, respectively. Further details on
the architectures, hyperparameters, and additional plots can
be found on the website1 and the code2.

VIII. RESULTS AND DISCUSSION

Two main questions are discussed in detail:
1) Do contrastive-based losses outperform reconstruction-

based losses when task-irrelevant factors of variations
are present in the observations?

2) Can simple data augmentation as described in Sec. III
boost the representation performance?

Influence of Contrastive Loss: To answer question 1,
we carry out a quantitative and a qualitative analysis on

2https://github.com/State-Representation/code

the box manipulation task. The former is summarized in
Table III (top part). We observe that models PC-VAE, PC-
Siamese and CE-Siamese, employing a contrastive loss,
manage to achieve almost perfect performance in terms of
homogeneity (hc), completeness (cc) and edge score (ce)
with top view dataset BMt, enabling planning in their latent
spaces. In particular, best planning performance (98.3% for
% any) is achieved by the pure contrastive model CE-
Siamese, followed by PC-Siamese (57.3% for % any) and
PC-VAE (29.9% for % any). In contrast, the case of no
latent mapping (first row), i.e., the use of raw observations,
the PCA and the reconstruction-based models achieve very
low clustering and planning performance, reaching no correct
paths. This also confirms the unsuitability of directly using
raw high-dimensional observations for task planning with
task-irrelevant factors of variations. Similarly, model PC-AE
obtains poor performance, reporting ce = 0.28 which leads
the planning to fail due to an excessive number of erroneous
edges. This suggests that the sole addition of the contrastive
loss to the reconstruction one may be not sufficient to effec-
tively structure the latent space. For the dataset BMst (top
right), having observations taken from different viewpoints,
it can be noticed that the pure contrastive-based models CE-
Siamese and PC-Siamese obtain the best performance in
terms of clustering and planning, with CE-Siamese (78.7%
for % any) outperforming PC-Siamese (27.5% for % any),
while zero success correct paths are obtained by PC-VAE
and PC-AE, mixing reconstruction and contrastive losses, as
well as by PCA, AE and β-VAE. This confirms the relevance
of leveraging task priors to handle task-irrelevant factors
of variation, like the different viewpoints. The effectiveness
of the best performing model (CE-Siamese) in regards to
planning was also validated on the real robotic system shown
in the supplementary video.

The above results are also reflected in the qualitative anal-
ysis in Fig. 5 (top row, left part) where the latent encodings
obtained with the different models as well as raw obser-
vations (O column) are visualized through 2D t-SNE [38]
plots. Results with BMst are shown. We can notice that
the raw observations, PCA and purely reconstruction-based
models AE and β-VAE fail in structuring the representations,

https://github.com/State-Representation/code

Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

Fig. 5: Two-dimensional t-SNE plots for the box manipulation task for the mixed view (top row) and the shelf arrangement
task for the distractor case (bottom row). Each color is associated with a possible underlying state. On the right we display
the plots for the augmented contrastive models. Full results are accessible on the website1.

Models
Dataset SA0d

|V| hc cc sc |E| ce
Paths scores

% all % any
PC-AE 5 0.28 1.00 0.93 4 0.75 0.00 0.00
PC-VAE 5 0.28 1.00 0.78 4 0.75 0.00 0.00
PC-Sia. 16 0.64 1.00 0.96 32 0.59 1.01 1.8
CE-Sia. 296 1.00 1.00 0.54 842 1.00 95.90 95.90

Dataset SA0d

PC-AE 97 0.87 0.95 0.51 368 0.77 20.30 35.90
PC-VAE 64 0.90 0.99 0.32 235 0.77 33.13 55.40
PC-Sia. 225 1.00 1.00 0.74 772 1.00 100.0 100.0

Models
Dataset SA5d

|V| hc cc sc |E| ce
Paths scores

% all % any
PC-AE 5 0.28 1.00 0.9 4 0.75 0.40 0.40
PC-VAE 5 0.28 1.00 0.79 4 0.75 0.40 0.40
PC-Sia. 16 0.64 1.00 0.98 32 0.69 2.42 4.10
CE-Sia. 286 1.00 1.00 0.46 841 0.99 95.12 95.30

Dataset SA5d

PC-AE 18 0.49 0.98 0.01 34 0.44 0.24 0.40
PC-VAE 16 0.64 1.00 0.52 32 0.69 2.42 4.10
PC-Sia. 30 0.78 1.00 0.61 87 0.74 6.66 13.10

TABLE IV: Evaluation results for the contrastive-based latent mapping models on SA0d (top left) and SA5d (top right) and
their augmented versions SA0d (bottom left) and SA5d (bottom right) for the shelf arrangement task. Best results in bold.

forming spurious clusters in which different states are mixed
up. Non-homogeneous clusters are also obtained by PC-
AE and PC-VAE, while a significant improvement of the
latent space structure is recorded by the purely contrastive
loss based Siamese networks (PC-Siamese and CE-Siamese),
leading to visually distinct clusters.
In summary, we observe that the contrastive-based models
(PC-Siamese, CE-Siamese) outperform the other ones by a
significant margin. Notably, the architectures of the Siamese
networks are much shallower2 than the AE and VAE ones,
leading to considerably faster training processes (< 3.5
minutes vs ≈ 2.5 hours on a GeForce GTX 1080 Ti).

Influence of Data Augmentation: To evaluate the influence
of the data augmentation in Sec. III, we first analyze the
representation performance on the shelf arrangement task
when it is applied and when it is not. For the sake of
space, we focus only on the four contrastive-based models
since the unsuitaibility of raw observations, PCA, AE and β-
VAE has been shown above. Table IV reports the obtained
evaluation metrics. When no augmentation is applied (top
part), all the models, except for CE-Siamese, show very
low performance for both clustering and planning on both
datasets, creating a small number of clusters (� 70) that are
erroneously connected. In contrast, CE-Siamese generates a
large amount of pure clusters (' 300 clusters with he ' 1
for both datasets) which are almost perfectly connected
(ce ' 1), leading to high path metrics (% any ' 95% for both
datasets). When the augmentation is used, the performance
of all models improves for the no distractors dataset (bottom
left), leading the PC-Siamese to reach perfect path metrics
(100% for % any) and PC-AE and PC-VAE to reach '
36% and ' 55% for % any. This confirms the beneficial
effect of the considered augmentation which, however, is
not equivalently effective when distractor objects are present

in the scene (bottom right). More specifically, only PC-
Siamese is positively influenced by the augmentation with
SA5d, reaching path metrics % any ' 13% (from ' 4%).
This suggests that a higher number of dissimilar pairs should
be synthetically generated for this case study, i.e., n � 1.
Note the augmented datasets are only used for the latent
mapping but not for the LSR building to avoid building
wrong edges. Moreover, the CE-Siamese is not evaluated
with the augmentation technique since it does not use action
pairs. Similar observations also hold for the box manipulation
dataset in Table III, where we can notice that, when the
augmentation is used (bottom part), PC-Siamese manages to
achieve almost perfect performance on the top view dataset
BMt, with |V| = 133 clusters and path performance 98.2%
for % any, as well as good performance on the mixed view
dataset BMst, with path performance 78.8% for % any.
General improvements are also recorded for PC-AE and PC-
VAE which, however, underperform the purely contrastive-
based models.

Fig. 5 reports the t-SNE plots for the shelf stacking task
(bottom row) with five distractors (SA5d) obtained with (on
the right) and without (on the left) augmentation. In this task
the optimal number of clusters is 70. It is evident from the
t-SNE visualizations that, in the absence of augmentation,
only the CE-Siamese model can structure the encodings such
that clusters of different states are not overlapping. This is
due to the training procedure of CE-Siamese [26], which
only relies on similar pairs and synthetically builds a large
number of dissimilar pairs [26]. In contrast, better separation
of the states is observed with data augmentation. Notably, in
SA5d, PC-Siamese, which solely relies on the contrastive
loss, achieves a better clustering than PC-AE and PC-VAE,
which also exploit reconstruction loss. Similar considerations
also hold for the box manipulation task (top row of Fig. 5).

Appeared at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)
October 23-27 2022 Kyoto, Japan

In summary, we observe that a simple data augmentation
boosts the performance of the contrastive-based models.

IX. CONCLUSION

In this work, we investigated the effect of different loss
functions for retrieving the underlying states of a sys-
tem from visual observations applied to task planning. We
showed that purely reconstruction-based models are prone to
fail when task-irrelevant factors of variation are present in
the observations. In contrast, the exploitation of task priors
in contrastive-based losses as well as of an easy data aug-
mentation technique resulted in a significant representation
improvement. We analyzed two robotics tasks with different
task-irrelevant factors of variation: i) box manipulation, on a
real robotic system with different viewpoints and occlusions,
and ii) shelf arrangement, with distractor objects that are
irrelevant for the task itself. We thus believe that contrastive-
based losses as well as simple data augmentations go a long
way toward obtaining meaningful representations that can
be used for a wide variety of robotics tasks and provide a
promising direction for the research community.

REFERENCES

[1] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” J. Artificial Intelligence Res., vol. 61, pp. 215–289, 2018.

[2] A. Stooke, K. Lee, P. Abbeel, and M. Laskin, “Decoupling rep-
resentation learning from reinforcement learning,” arXiv preprint
arXiv:2009.08319, 2020.

[3] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: A constraint-based approach.”
in Robotics: Science and Syst., vol. 12, 2016, p. 00052.

[4] V. Thomas, E. Bengio, W. Fedus, J. Pondard, P. Beaudoin,
H. Larochelle, J. Pineau, D. Precup, and Y. Bengio, “Disentangling
the independently controllable factors of variation by interacting with
the world,” Learning Disentangling Representations Wksp. at NeurIPS,
2017.

[5] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE Robot. Autom. Letters, vol. 4, no. 3, pp. 2407–2414,
2019.

[6] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” Adv. Neural Inf. Process. Syst., vol. 28, pp. 2746–2754,
2015.

[7] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
Int. Conf. on Mach. Learn., 2019, pp. 2555–2565.

[8] K. Pertsch, O. Rybkin, F. Ebert, S. Zhou, D. Jayaraman, C. Finn,
and S. Levine, “Long-horizon visual planning with goal-conditioned
hierarchical predictors,” Adv. Neural Inf. Process. Syst., vol. 33, 2020.

[9] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” in Int. Conf. on Learn.
Representations, 2019.

[10] S. Nair, S. Savarese, and C. Finn, “Goal-aware prediction: Learning to
model what matters,” in Int. Conf. on Mach. Learn., 2020, pp. 7207–
7219.

[11] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel,
“Deep spatial autoencoders for visuomotor learning,” in IEEE Int.
Conf. Robot. Autom., 2016, pp. 512–519.

[12] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani,
N. Jamali, K. Yamane, S. Iba, and K. Goldberg, “Visuospatial foresight
for multi-step, multi-task fabric manipulation,” Robotics: Science and
Syst., 2020.

[13] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable
reinforcement learning with autoencoders for tactile and visual data,”
in IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 2016, pp. 3928–
3934.

[14] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive represen-
tation learning: A framework and review,” IEEE Access, vol. 8, p.
193907–193934, 2020.

[15] M. Laskin, A. Srinivas, and P. Abbeel, “Curl: Contrastive unsupervised
representations for reinforcement learning,” in Int. Conf. on Mach.
Learn., 2020, pp. 5639–5650.

[16] T. Kipf, E. van der Pol, and M. Welling, “Contrastive learning of
structured world models,” in Int. Conf. on Learn. Representations,
2019.

[17] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
S. Levine, and G. Brain, “Time-contrastive networks: Self-supervised
learning from video,” in IEEE Int. Conf. Robot. Autom., 2018, pp.
1134–1141.

[18] A. Zhang, R. T. McAllister, R. Calandra, Y. Gal, and S. Levine,
“Learning invariant representations for reinforcement learning without
reconstruction,” in Int. Conf. on Learn. Representations, 2020.

[19] R. Jonschkowski and O. Brock, “Learning state representations with
robotic priors,” Autonomous Robots, vol. 39, no. 3, pp. 407–428, 2015.

[20] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised
learning of invariances,” Neural computation, vol. 14, no. 4, pp. 715–
770, 2002.

[21] R. Legenstein, N. Wilbert, and L. Wiskott, “Reinforcement learning on
slow features of high-dimensional input streams,” PLoS computational
biology, vol. 6, no. 8, p. e1000894, 2010.

[22] S. Höfer, M. Hild, and M. Kubisch, “Using slow feature analysis to
extract behavioural manifolds related to humanoid robot postures,” in
Int. Conf. on Epigenetic Robot., 2010, pp. 43–50.

[23] M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino,
and D. Kragic, “Latent space roadmap for visual action planning of
deformable and rigid object manipulation,” IEEE/RSJ Int. Conf. on
Intell. Robots and Syst., 2020.

[24] N. Jetchev, T. Lang, and M. Toussaint, “Learning grounded relational
symbols from continuous data for abstract reasoning,” 2013.

[25] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in IEEE Int. Conf. Robot. Autom., 2017, pp. 2786–2793.

[26] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in Interna-
tional conference on machine learning, 2020, pp. 1597–1607.

[27] H. Hotelling, “Analysis of a complex of statistical variables into
principal components.” J. Educational Psychology, vol. 24, no. 6, p.
417, 1933.

[28] M. A. Kramer, “Nonlinear principal component analysis using autoas-
sociative neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243,
1991.

[29] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual
concepts with a constrained variational framework,” 2016.

[30] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun,
“Unsupervised feature learning from temporal data,” arXiv preprint
arXiv:1504.02518, 2015.

[31] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., vol. 2, 2006, pp. 1735–1742.

[32] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” in Adv. Neural Inf. Process. Syst., 2016, pp. 1857–1865.

[33] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering,” J. Open Source Software, vol. 2, no. 11, p. 205,
2017.

[34] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Joint Conf. Empirical
Methods in Natural Language Process. and Computational Natural
Language Learn., 2007, pp. 410–420.

[35] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis,” J. Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

[36] J. K. Haas, “A history of the unity game engine,” 2014.
[37] C. Chamzas, M. Lippi, M. C. Welle, A. Varava, A. Marino, L. E.

Kavraki, and D. Kragic, “State representations in robotics: Identifying
relevant factors of variation using weak supervision,” in Robot Learn.
Wksp. at NeurIPS, 2020.

[38] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.

	Introduction
	Related Work
	Problem Formulation
	Latent Mapping Modeling
	Latent Planning
	Representation Evaluation Metrics
	Clustering metrics
	Planning Evaluation

	Validation Setting
	Results and Discussion
	Conclusion
	References

