
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2025 1

Image-Based Roadmaps for Vision-Only Planning
and Control of Robotic Manipulators

Sreejani Chatterjee, Abhinav Gandhi, Berk Calli, Constantinos Chamzas

Abstract—This work presents a motion planning framework for
robotic manipulators that computes collision-free paths directly
in image space. The generated paths can then be tracked using
vision-based control, eliminating the need for an explicit robot
model or proprioceptive sensing. At the core of our approach is
the construction of a roadmap entirely in image space. To achieve
this, we explicitly define sampling, nearest-neighbor selection, and
collision checking based on visual features rather than geometric
models. We first collect a set of image space samples by moving
the robot within its workspace, capturing keypoints along its body
at different configurations. These samples serve as nodes in the
roadmap, which we construct using either learned or predefined
distance metrics. At runtime, the roadmap generates collision-
free paths directly in image space, removing the need for a robot
model or joint encoders. We validate our approach through an
experimental study in which a robotic arm follows planned paths
using an adaptive vision-based control scheme to avoid obstacles.
The results show that paths generated with the learned-distance
roadmap achieved 100% success in control convergence, whereas
the predefined image space distance roadmap enabled faster
transient responses but had a lower success rate in convergence.

Index Terms—Motion and Path Planning, Collision Avoidance,
Integrated Planning and Control

I. INTRODUCTION

V ISION-BASED control techniques [1], [2], offer signifi-
cant advantages for robotic manipulators in unstructured

and cluttered environments by enabling closed-loop control
using task-relevant visual information. These techniques also
enhance robustness against model inaccuracies, beneficial for
robots with complex or variable dynamics [3]–[5]. This strat-
egy is especially useful for robots that are difficult to model
accurately, e.g. soft robots [6], [7], under-actuated robots [8],
[9], 3D printed robots [10], [11], and robots with inexpensive
hardware [12]. Furthermore, model-free visual servoing, which
learns robot-feature motion models during control, reduces
reliance on a priori knowledge of the robot model [13], [14].

The goal of our research is to push the boundaries of purely
vision-based control and motion planning for robotic manip-
ulators, by decreasing reliance on explicit robot modeling or
proprioceptive sensing. In doing so, we strive to use natural
visual features along the robot’s body in image space, without
attaching any external markers. We use multiple features along
the robot’s body to uniquely distinguish full-body configura-
tions that have the same end effector position, a characteristic
common in redundant robots such as continuum manipulators.

Manuscript received: February, 11, 2025; Revised May, 10, 2025; Accepted
June, 13, 2025.

This paper was recommended for publication by Editor Dr. Aniket Bera
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the National Science Foundation under Award No. 2341532

All authors are with the Robotics Engineering Department
of Worcester Polytechnic Institute, Worcester, MA 01609, USA.
schatterjeewpi.edu/sreejani.c@gmail.com

Digital Object Identifier (DOI): see top of this page.

Fig. 1. The robot follows a collision-free path using visual keypoints (colored)
planned with the proposed method. The set of keypoints are tracked in order:
green, magenta, blue, and red. The robot avoids the yellow obstacle while
moving between the specified start and goal.

While the works in [15]–[17] provided algorithms to track
natural keypoints and use them to achieve vision-based model-
free control with decent transient responses, these algorithms
are only designed to run in obstacle-free space and do not
provide motion planning capability to avoid obstacles in the
scene.

In this work, we tackle the problem of collision-free path
planning for purely vision-based robot control: we develop a
planning and control scheme that does not rely on a robot
model or on-board sensors (e.g. joint encoders) in runtime. As
such, this strategy is especially useful for (but not limited to)
soft/underactuated/inexpensive robots that are hard to model
and may not have reliable proprioceptive sensing.

Toward this goal, we propose a novel motion planning
formulation that operates only with visual information. We
propose a vision-only motion planning methodology using
roadmaps [18]. We investigated two ways of generating
roadmaps using natural features on a robot: 1) directly utilizing
the Euclidean distance between keypoints in image space as
a distance metric, 2) estimating the joint displacements from
image features and utilizing it as a distance metric. For the
latter, we first used an automated data collection pipeline to
annotate natural keypoints’ placement in image space along the
robot’s body as the robot moves across various configurations.

This dataset was used to develop a simple neural network
that approximates joint displacements based on keypoint lo-
cations in image space. These distance metrics were inte-
grated into the roadmap construction. Once the roadmaps are
constructed, polygon-based collision checking and A* [19]
search are employed to ensure collision-free paths. These two

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2025

approaches have different implications for vision-based robot
control. In a nutshell, we observed that utilizing estimated
joint distances in the roadmap results in smoother and more
accurate tracking of the generated path, allowing the robot to
stay in its defined workspace and avoid obstacles. In contrast,
roadmaps based on Euclidean distances in image space can
offer faster transient responses, albeit with potentially less
reliable tracking. in environments with tightly spaced or irregu-
larly shaped obstacles, these image space roadmaps frequently
fail to generate feasible paths due to their poor alignment
with the underlying joint-space feasibility. Our experiments
demonstrate these aspects both in the presence and absence of
obstacles.

II. RELATED WORK
Motion planning is a core problem in robotics that has been

extensively studied over the decades. It is generally categorized
into three main types: optimization-based [20], [21], sampling-
based [22], [23], and search-based planners [24], [25]. Re-
cently, Jacobian-based motion planning [26] has also gained
traction for obstacle avoidance tasks. While all methods have
found widespread success in different applications, all of these
rely on having an explicit geometric model of the robot to
design feasible paths. In this work we extend the principles of
sampling-based planning of the Probabilistic Roadmap (PRM)
approach [18], to provide a method for motion planning where
a robot model is not available.

Model-free planning, especially without prior knowledge
of the robot’s geometry, presents unique challenges. Rein-
forcement learning (RL) has been explored extensively in
the recent decades to address such challenges. For instance,
[27] proposed an RL-based framework for generating jerk-
free, smooth trajectories. While effective, this method depends
on carefully crafted reward functions and extensive datasets
generated in simulation, with no real-world validation. Sim-
ilarly, [28] introduced a hybrid approach combining RRT*-
based trajectories with PPO reinforcement learning for policy
refinement. However, this method heavily relies on model-
based elements like precomputed trajectories and supervised
learning for initial policy design, with experiments confined to
simulated environments. In contrast, our approach eliminates
reliance on explicit or precomputed models and trajectories by
leveraging visual keypoints to construct roadmaps directly in
image space, requiring only a small dataset collected from a
real robot. This makes our method more adaptable to scenarios
without precise geometric models.

Among related works, the approaches proposed in [29]
and [30] are the most closely aligned with ours. In [29],
the authors plan trajectories by learning a low-dimensional
latent space using three neural networks: an autoencoder, a
latent dynamics model, and a collision checking network. This
latent space allows planning without directly operating in the
high-dimensional input space (e.g., raw images or complex
joint configurations). While effective, their method requires
extensive simulation-based training, which introduces a signif-
icant sim-to-real gap. Moreover, the system is validated only
in simulation, and the reliance on multiple learned modules
increases complexity, making real-world deployment more

Fig. 2. The images depict a vision-based motion planning problem. The left
image shows the discretized representation of I highlighted in gray, where each
configuration is sampled as an image frame, resulting in a finite set of K. The
gray region in the right image highlights the same discretized representation
of Ifree, avoiding the obstacle in yellow. Ifree ensures a collision-free path
from the start configuration Kstart to the goal configuration Kgoal

challenging. In contrast, our method operates directly in image
space using visually tracked keypoints, avoiding the need for
encoding, decoding, or learned dynamics. It uses real robot
data exclusively, both for training and evaluation, and does
not rely on simulation. This results in a lightweight, practical
framework that is easier to implement and deploy in real-world
scenarios. In [30], the authors learn the topology of a per-
ceptual control manifold (PCM) using a topology-preserving
neural network (TRN) constructed over both robot joint con-
figurations and corresponding image features. This approach
explicitly relies on access to joint space information and was
designed specifically for a pneumatically driven robotic arm,
limiting its generalizability. In contrast, our method requires
only a dataset of image features and does not depend on any
explicit robot model or configuration information. As a result,
our approach is more general and can be easily modified to
both rigid and soft robotic manipulators.

Planning a path for image based visual servoing without
a-priori knowledge of the robot’s model is rarely delved into
in the literature. For instance, [31] modeled a path planner
for visual servoing to bridge gaps between initial and target
positions which are much further apart in configuration space,
without addressing collision avoidance. In [32] authors achieve
obstacle avoidance in pose based visual servoing and hence
still needed explicit robot model instead of only visual feed-
back.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section we describe the motion planning prob-
lem, a brief review of sampling-based methods focusing on
probabilistic roadmaps, and finally we introduce the problem
statement that we are trying to solve.
A. Model-based Motion Planning

Let x ∈ X denote the state and state-space, and u ∈ U the
control and control-space of a robot system [22]. The system
dynamics equations f of the robot system can be written as

x(T) = x(0) +

∫ T

0
f(x(t), u(t))dt (1)

If the system dynamics impose constraints on the allowable
paths the system is called a non-holonomic system. Now, Let
Xobs ⊂ X denote the invalid state space, which is the set of

CHATTERJEE et al.: VISION-ONLY MOTION PLANNING AND CONTROL 3

states that violates the robots kinematic constraints or collides
with the workspace W ⊆ R3. e.g.,

Xobs = {x ∈ X | R(x)
⋂
O ≠ ∅} (2)

where R(x) ⊆ R3 is the set of all points occupied by the
robot at state x, and O ⊂ W denotes the set of obstacles within
the workspace1. Let Xfree = X \Xobs denote the collision-free
state space. Also, let xstart ∈ Xfree and XG ⊆ Xfree represent
the start state and goal region, respectively.

Motion Planning Problem: Given the motion planning tuple
(X , R,W,U , f, xstart,XG) find a time T and a set of controls
u : [0, T] → U such that the motion described by Eq. 1 satisfies
x(0) = xstart, x(T) ∈ XG and x(t) ∈ Xfree.

The problem we are considering in this setting is departing
from the above motion planning problem as the geometric
model R(x), the dynamics f and the workspace W is not
directly available. Instead the only information available is the
space of admissible controls U and an image Im ∈ IM.

We will describe the new problem statement by explicitly
defining equivalent concepts of obstacles, robot states, and
state dynamics directly in the image space. We assume that
we are given a point tracking function that maps a given
image to N fixed pixel points on the robot’s body. This vector
of pixel points is denoted as an image state K ∈ I . Where
I ⊂ RN×2 denotes the space of all image states. In Fig. 1 we
can see 4 different robot configurations in image space. Each
configuration is represented by a set of 5 same-colored circles.
Each of these circles on the robot’s body in the image is a pixel
point and is denoted as a keypoint or k. The kinematic chain or
shape formed by the vector of 5 circles represents one image
state K.

Given a set of image obstacles IO ⊂ Im we define:
Iobs = {K ∈ I|RI(K)

⋂
IO ≠ ∅} (3)

where RI(K) ⊆ Im is the set of pixels that the robot occupies
at image state K. Similarly to before, we define Ifree = I \Iobs,
Kstart and Ig .

We define the unknown system dynamics function as:

K(T) = K(0) +

∫ T

0
g(K(t), u(t))dt (4)

Here we note that even if the underlying function f is fully-
integrable (holonomic-system) if dim(I) > dim(X) the equiv-
alent system dynamics equations g will be non-holonomic as
there will be paths in the higher dimensional image space I
that cannot be followed by the robot. In our approach we
consider this issue, and propose a way to produce paths that
approximately satisfy these constraints. In the first image of
Fig. 2, the grey region illustrates the discretized representation
of I , as each configuration is captured as an image frame,
resulting in a finite set of K sampled at a fixed frame rate.
The second image of Fig. 2 highlights similar discretized
representation of Ifree.

Given the above definitions, let us define the vision-only mo-
tion planning problem. Vision-Only Motion Planning Problem:
Given the tuple (I,RI,U , IO, Im,Kstart, Ig) find a time T and
a set of controls u : [0, T] → U such that the motion described
by g satisfies K(0) = Kstart, K(T) ∈ Ig and K(t) ∈ Ifree.

1This equation only encodes collisions; joint or kinematic constraints can
be incorporated in a similar manner.

IV. METHODOLOGY

Since the system dynamics equation is unknown, we cannot
directly plan in the control space U . Instead, we will plan a
path K0,K1 . . . ,Kn directly in the I-space and then control
the robot to follow the path with a vision-only controller [15].

To compute the path, which is the main contribution of this
work, we propose to use probabilistic road-map planner (PRM)
by adapting its subroutines to operate directly in I-space.
Specifically, we opted to adapt the LAZY-PRM [33] planner
due to its compatibility with our particular requirements.
However, any sampling-based planner which relies on the same
subroutines could be used.

Algorithm 1. Build-Lazy-PRM

1: procedure BUILD-LAZY-PRM(N, k)
2: G ← INIT()
3: while G.size()≤ N do
4: Knew ← SAMPLE(I)
5: G.addNode(Knew)
6: for each K ∈ G.nodes() do
7: N (K)← K-NEAREST(K, G)
8: for each Knear ∈ N (Knew) do
9: e← (K,Knear)

10: if e /∈ G.edges() then
11: G.addEdge(e)
12: return G

Algorithm 2. Query-Lazy-PRM

1: procedure LAZY-QUERY-PRM(Kstart, Kgoal, G)
2: G.add(Kstart) ▷ Add start, and goal to the Graph
3: G.add(Kgoal)
4: Edges, ← SEARCH-GRAPH G(Kgoal, Kstart)
5: for each e ∈ G.edges() do
6: if COLL FREE(e) then
7: for each Knear ∈ N (xnew) do
8: e← (K,Knear)
9: if COLL FREE(e) and e /∈ G.edges() then

10: G.addEdge(e)
11: return Path

Similar to PRM, LAZY-PRM operates in two phases: a
building phase Alg. 1, where the roadmap is constructed
without collision checking, and a query phase Alg. 2, where
a path is searched and only the selected edges are checked
for collisions. If any are invalid, the roadmap is updated and
the search is repeated. This separation allows the roadmap to
be built offline, before robot deployment, without considering
obstacles, enabling reuse across different environments and
physical setups.

We use the probabilistic roadmap method for its efficiency in
multi-query scenarios, where a single precomputed graph sup-
ports multiple start–goal pairs. The lazy variant is particularly
suitable as the environment remains mostly unchanged be-
tween planning queries. Its ability to handle high-dimensional
spaces also makes it well-suited for our I-space representation
based on visual keypoints. We first describe how LAZY-PRM
works, followed by the modifications needed to adapt it to
I-space.

The building-phase (Alg. 1) works with the following pro-
cedure. First, in line 4, a sample is generated and added in
graph G. Then the k nearest neighbors are found by using a
distance defined in I (line 7) and are connected with edges.
This continues until N nodes are in the graph G.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2025

During the query-phase (Alg. 2) a new motion planning
problem is solved. Given a Kstart and Kgoal they are added in
the graph, and connected with their nearest-neighbors. Then
a graph search algorithm e.g., A* is used to find a path. If
edges of the path are in-collision they are updated accordingly
in the roadmap, and the process repeats until a collision free-
path is found. The three operations SAMPLE, K-NEAREST,
COLL FREE, for Alg. 1 in lines 4, 7 and Alg. 2 typically
require a model for the robot.

SAMPLE: This function typically samples the configuration
space uniformly. However, in the vision-only setting, we can’t
directly sample in I-space as we don’t have the model of
the robot. Since dim(I) > dim(X) the keypoint vectors
(image state K) that correspond to actual configurations of
the robot, will lie in a lower-dimensional (equal to dim(X))
manifold in I-space. Thus randomly sampling I-space will
have 0 probability of sampling a valid configuration that lies
on the valid manifold [23]. We describe how to address this
issues in Sec. IV-A, by collecting and storing valid samples
directly from the real robot.

K-NEAREST: This function usually relies on a distance
defined in X and finds the nearest configurations that can
be connected. However, since our representation in I-space
is now a non-holonomic system, defining this distance is very
challenging, as a straight line path in I-space defined by a
simple Euclidean distance, might not be accurately followable
by a controller. To mitigate this, we describe a learning-based
approach to estimate the unknown joint-distance, in Sec. IV-B.

COLL FREE: This function checks if there is a collision for
an edge in X . Again this typically requires the model R(x)
for the robot. In the vision only case, we propose simple yet
successful method to do collision checking with an RI(x)
directly in I-space Sec. IV-C.

In the next section we describe our proposed method for
each of the aforementioned subroutines. Fig. 3 visually de-
scribes all the steps of the visual motion planning framework.

A. SAMPLE: Executed Trajectories as Proxy Samples
In the absence of a robot model, we represent each image

state K ∈ I by identifying and annotating keypoints (k) on
the robotic arm using an automated data collection pipeline
described in [16], [17]. Each Kn is composed of a set of N
keypoints k, where each k represents a pixel point of a specific
location on the robot’s body in image space. For instance, if
N = 5, a keypoint vector or image state Kn is represented by
a vector of k1, k2, k3, k4, k5, where each k is a pixel point
in the nth image frame. An example vector of such keypoints
is shown in Fig. 2 as Kstart or Kgoal

To systematically explore the robot’s visible workspace
in the image space and ensure comprehensive coverage, we
compute velocities for each joint j using:

vj = min

(
Mj

res · dt
, vmax

)
, (5)

where, Mj is the motion range or difference of limits of joint
j, res, is the number of discrete steps used to traverse Mj ,
dt is the duration allocated to complete each step, and vmax
is the maximum allowable velocity for joint j. By dividing

the motion range of each joint into uniform increments based
on res, we ensure that the robot systematically explores all
possible configurations within its workspace. The resulting
dataset of image states K is thus evenly distributed across
the image space I , enabling robust coverage and accurate
representation of the robot’s motion capabilities.

Each configuration Kn is computed using the following
transformation: Kn = K · Tcw · xn (6)

where K is the camera intrinsic matrix, Tcw is the camera ex-
trinsics matrix derived from calibration processes described in
[34], [35], and xn is the 3D robot configuration in workspace.
This transformation projects the 3D configuration xn, into their
corresponding 2D (pixel) projection in the image described in
[36], resulting in a set of k for each image state Kn The pro-
cess captures the robot’s motion across its visible workspace
and creates a comprehensive dataset of K, representing close
to all feasible configurations in image space. Dataset of K can
also be collected by following the process describe in [17].

The Keypoint Dataset Samples section of Fig. 3, represents
this part of the workflow. The grey area in the left image of
Fig. 2 illustrates how K are distributed within image space
with each frame consisting of a set of k or keypoints. This
collection process yields a dataset of K that can be used to
enable efficient roadmap construction for vision-based motion
planning.

Since this data collection process relies only on observable
image features, it can be easily applied to other robotic
systems, including soft and rigid manipulators, enabling broad
applicability of the proposed framework.
B. K-NEAREST: Learned and Image Space Metrics

To search for the K-nearest neighbors of each image state
sample we employ the following two distance metrics:

• Learned distance, where the distance is learned by a
neural network, trained to predict joint displacements
between two image states. The input to the network
is a pair of image states K1 and K2 and the output
is an estimated joint displacement required to transition
between them:

distlearned()← NN(K1,K2) (7)

• Distance in Image space, where we simply calculate the
Euclidean distance between K1 and K2 in image space:

distimage()← ||K1 − K2||2 (8)

Each metric influences the graph’s structure by determining
the nearest neighbors and defining the edges in the roadmap.
The learned distance prioritizes image states with minimal
estimated joint displacement, while the image space distance
favors image states that are closer in the image. These differ-
ences impact the connectivity of the roadmap, as illustrated
in the Connected Roadmap and Connect Start and Goal
sections of Fig. 3.

1) Dataset generation for network model: While collecting
the dataset of image states K in Sec. IV-A, we recorded
the velocity (Eq. 5) applied to transition between consecutive
frames. Using this data, we created a new dataset that includes
pairs of consecutive image states (K1, K2) and their estimated

CHATTERJEE et al.: VISION-ONLY MOTION PLANNING AND CONTROL 5

A* Search with
 Lazy Collision Checking

Connect
Start and Goal

Connected Roadmap

Keypoint Dataset
 Samples

Collision Free Path

Learned Dista
nce

Image Space Distance

Start

Goal

Start Start

Start Start Start

Goal Goal Goal

Goal Goal

Obstacle

Candidate Path

Collision Free Path

Keypoint Configuration

Fig. 3. Overview of the roadmap creation process for motion planning. In this image the purple circles are nodes in image space represented by image state
in each frame. Using a distance metric, we connect the nodes to create a roadmap. As observed two different metrics produce different edges on the graph.
After an A* search for path finding between a pair of start (Kstart) and goal (Kgoal) configurations and collision check if required, paths are found for both
roadmaps. The green lines denote the final path after collision check. As observed, the learned distance roadmap has a clearly more optimized path than the
image space distance roadmap

joint displacements. This is calculated by multiplying the
recorded velocity with the frame rate at which K was captured,
as described in Eq. 6.

Only pairs of K captured in consecutive image frames are
included in this data generation process. However, constructing
the graph G, requires computing distances between arbitrary K
pairs in I-space. To achieve this, a neural network is trained to
predict joint displacements between different image-state pairs
K.

To enhance diversity, the dataset is augmented by combining
frame sequences where the first frame’s image state (Kstart)
and the last frame’s image state (Kend) act as boundaries, with
total joint displacements calculated as sum of displacements
across intermediate frames. This approach ensures diverse
transitions, enabling the neural network to accurately estimate
joint displacements for any image state pair.

2) Neural Network for Learned Distance Metric: To derive
Eq. 7, we design a simple neural network using the aforemen-
tioned dataset to learn a distance more similar to the joint
space distance. The model takes concatenated arrays of the
starting image state (Kstart) and the subsequent image state
(Knext) as input and predicts the estimated joint displacement.
We train the network using the Adam optimizer (learning rate:
0.005), a batch size of 32, and 400 epochs, minimizing mean
squared error (MSE) loss. Performance is evaluated using
RMSE, MAE, and R2 metrics.

C. COLL FREE:Image-Based Collision Checking

To enable collision checking in our model-free system,
we employ an image-based polygon collision-checking frame-
work. Obstacles are defined directly in the image space by
drawing contours around visible objects and expanding them
with a safety margin to account for the robot’s volume and
controller uncertainty. Each candidate path is checked by
testing for intersection between the expanded obstacle region
and polygons formed by corresponding keypoint pairs across
two image states. This method effectively handles obstacles
of arbitrary shape and size and does not require access to the
robot’s model or workspace geometry The collision checking
process and A* search is shown in A* Search with Lazy
Collision Checking of Fig. 3.

Fig. 4. Polygon-based collision checking in image space. Four polygons (light
blue) are defined by connecting consecutive keypoints—(k1, k2), (k2, k3),
(k3, k4), and (k4, k5)—from the current image state (K1, green) to its
neighbor (K2, red). A collision is detected if any polygon intersects the
obstacle contour (yellow) inflated by a purple safety margin, as seen for ([k2,
k3], [k3, k4], and [k4, k5]) in the first image and [k4, k5] in the shelf
scenario.

D. Adaptive Visual Servoing
This work builds on the adaptive visual servoing method

described in [15], using a roadmap of collision-free sequence
of goal image states. At each goal, vector of keypoints (k) in
image state (K) is tracked as visual features as described in
[16]. The controller moves the arm minimizing the feature
error, computed as the difference between the current and
the target K. The Jacobian matrix, estimated online via least-
square optimization of recent joint velocities and keypoints
vector over a moving window, eliminates the need to read
joint position from encoder. This makes the control pipeline
completely model-free. To improve accuracy, we reset the
Jacobian estimation window at each new target keeping the
estimate unbiased and relevant to the current goal. Since goal
spacing in the image may vary across experiments, a saturation
limit prevents velocity spikes, ensuring smooth motion and
protecting the motor.

V. EXPERIMENTS AND OBSERVATIONS:
We experimentally assessed the performance of the proposed

vision only motion planning framework on a Franka Emika
Panda Arm [37].

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2025

Joint Space Learned Image Space

Joint distances (radians)

Ed
ge

s

Fig. 5. Distribution of joint displacements along roadmap edges. The Learned
roadmap closely aligns with the Joint Space distribution, indicating accurate
distance estimation. In contrast, the Image Space roadmap shows a wider
spread, reflecting poor alignment between image and joint space.

A. Experimental details
1) Generating Samples: We generated the required image

state samples by collecting a finite dataset created by actuating
the planar joints (Joints 2, 4, 6) of the Franka arm, using
velocities computed from Eq. 5 as explained in Sec. IV-A,
covering the robot’s planar workspace.

2) Building the Roadmap: The collected samples K were
used as nodes to build roadmaps based on the distance metrics
described in Sec. IV-B. We refer to the roadmap using image
space distances as the Image Space roadmap, and the one
using learned distances as the Learned roadmap. For bench-
marking, we also construct a Joint Space roadmap using actual
joint displacements from encoders, used only for comparison,
while preserving the model-free design. The k-neighbor value
for all approaches was set to 25. The first row of Table I shows
the time required to generate each roadmap. The learned
roadmap takes significantly longer to construct due to the
additional computational overhead of running neural network
inference during nearest neighbor computation.

3) Obstacle Representation and Path Planning: In the ex-
perimental setup, obstacles were modeled as virtual shapes
such as a rectangle or a triangle or a circle with a safety margin,
as shown in the first image of Fig. 4. Paths were generated
offline for various start (Kstart) and goal (Kgoal) incorporating
the obstacle avoidance logic from Sec. IV-C. These paths were
later used in adaptive visual servoing experiments.

4) Control Experiment Set-up for Single Obstacle: The
real-time control experiments used an Intel Realsense D435i
camera in an eye-to-hand setup for visual feedback. The
Panda arm followed the planned paths in 16 obstacle-free
and 10 obstacle-avoidance experiments. The performance of
each proposed roadmap was evaluated by comparing the joint
position changes between intermediate image states to those
of the joint space roadmap. The controller’s ability to guide
the arm along collision-free paths was evaluated for efficiency
and effectiveness.

5) Control Experiment Set-up for Multiple Obstacles: To
further evaluate the robustness of our planning method, we
conducted 4 additional experiments involving scenes with
multiple obstacles of varying shapes and sizes. The learned
roadmap successfully generated feasible paths in all 4 scenar-
ios. In contrast, the image space roadmap was able to find
valid paths in only 2 out of 4 cases, failing in the remaining

TABLE I. Roadmap building and average path generation time (s)
Joint Space Learned Image Space

Roadmap creation time (s) 0.25 766.19 0.28
Query path time (s) 2.422 3.19 2.38

TABLE II. Average joint distances (radians) for collision-free paths
Joint Space Learned Image Space

Mean (radians) 1.74 2.19 3.06

two due to limitations in its Euclidean distance metric when
navigating tighter environments.

6) Control Experiment Set-up for Virtual Shelf: We con-
ducted a proof-of-concept experiment simulating a real-world
object (a multi-level shelf), as shown in the second image of
Fig. 4, and planned paths using both the learned and image
space roadmaps.

B. Roadmap and Path Planning Experiments
In this section, we analyze the joint displacements along

the edges of the three roadmaps to evaluate their efficiency.
Path planning experiments were conducted in both collision-
free and obstacle-avoidance scenarios to compare the joint
distances covered by the paths generated from each roadmap.

1) Distribution of Joint Distances of Edges for Different
Roadmaps: Fig. 5 shows the joint displacement histograms
for the three roadmaps. The learned roadmap closely matches
the joint space roadmap, with only minor deviations, indi-
cating accurate estimation of joint displacements. In contrast,
the image space roadmap shows a wider spread and larger
displacements, suggesting less efficient transitions.

2) Average Joint Distances for Planned Collision-Free
Paths: We randomly selected 100 Kstart and Kgoal pairs from
the roadmaps for path planning without obstacles. As shown in
Table II, the learned roadmap produces joint distances closer
to the joint space baseline, while the image space roadmap
results in significantly higher displacements. This indicates
that the learned roadmap generates more efficient paths, better
suited for control convergence.

3) Planned paths for Control Experiments: We generated
planned paths for two scenarios: 16 start and goal pairs without
checking for collision and 10 pairs with collision avoidance.
Paths were computed using the three roadmaps: joint space,
learned, and image space. These precomputed paths were
used in the control experiments described in Sec. V-C. The
second row of Table I reports the average time each roadmap
took to generate paths for these scenarios.

For each planned path, we calculated metrics including the
average number of waypoints (intermediate image states), joint
distances between waypoints, total joint distances for the entire
path, and Euclidean distances between image states (keypoint
distances) both between waypoints and across the entire path.

As observed in Table III the learned roadmap consistently
resulted in fewer waypoints and shorter joint distances com-
pared to the image space roadmap, which prioritizes minimiz-
ing keypoints distances in image space but incurs higher joint
displacements.

Notably, the joint distances required to traverse 1000 pixels
in image space were much higher for the image space roadmap
than for the learned roadmap. This suggests that reliance on
image space proximity may lead to less efficient joint-space
paths.

CHATTERJEE et al.: VISION-ONLY MOTION PLANNING AND CONTROL 7

TABLE III. Comparison of joint distances and keypoints distances in image
space over experiments

Without Obstacle Avoidance With Obstacle Avoidance

Roadmaps Joint
Space Learned Image

Space
Joint
Space Learned Image

Space
Number of

Experiments
16 16 16 10 10 10

Avg. No. of
Waypoints

8 8 14 11 13 15

Avg. Joint
Distances

(radians) b/w
Waypoints

0.25 0.3 0.32 0.28 0.28 0.35

Avg. Keypoints
Distances

(pixels) b/w
Waypoints

167.99 174.76 84.11 139.53 129.13 89.36

Avg. Joint
Distances

(radians) over
Entire Path

1.92 2.27 4.29 3.04 3.46 5.36

Avg. Keypoints
Distances

(pixels) over
Entire Path

1222.42 1278.92 1157.00 1532.72 1569.37 1361.43

Joint Distance
(radians)

Traversed To
Move 1000

pixels in image
space

1.6 1.77 3.79 1.98 2.19 3.9

We have two theories from the above observations:
• The image space roadmap uses Euclidean distances, lead-

ing A* to favor shorter pixel paths with more intermediate
waypoints. In contrast, the learned roadmap, based on
joint displacements, yields more direct paths with fewer
waypoints.

• Image states that are close in pixel space can be far apart
in joint space, as shown in Table III. This can result in
larger joint movements and control errors, especially in
systems with non-holonomic constraints.

C. Control Experiments
The adaptive visual servoing experiments2 used precom-

puted paths from Sec. V-B3, with control gains optimized
to minimize rise and settling times while keeping overshoot
within 5%, by careful tuning. We also performed adaptive
visual-servoing experiments for the 4 scenarios for learned
and image space roadmaps as defined in Sec. V-A5. To high-
light the advantages of planning-based control over reactive
methods, we implemented an Artificial Potential Field (APF)
controller [38] and tested it on the same 4 multi-obstacle
scenarios from Sec. V-A5.

The control metric in Table IV shows that the image space
roadmap succeeded in 69.2% of cases, while the learned
roadmap achieved 100% success. When successful, the image
space roadmap had faster transients. This can be attributed
to its shorter pixel-distance paths, which reduce image space
error more quickly in scenarios where joint displacements are
relatively smaller. Table V uses the same metrics as Table III,
grouped by success and failure.

Image space roadmaps fail when the robot tries to follow
short pixel paths that require large joint movements. Due to
non-holonomic constraints, the robot might need to traverse
a curved path in joint space to achieve even a small shift
in image space, risking collisions or workspace violations.

2Planning and control experiments including apf videos, are available at
this link. The details of how to use the link is in the supplementary ReadMe
file. The supplementary video and relevant codes can be found in respective
links

TABLE IV. Performance results for the control experiments with and without
obstacle avoidance

Without Obstacle Avoidance With Obstcale Avoidance
Performance

Metrics
Joint
Space Learned Image

Space
Joint
Space Learned Image

Space
Successful

Experiments 16/16 16/16 13/16 10/10 10/10 5/10

System Rise
time (s) 74.92 97.53 94.75 105.38 125.38 90.46

System Settling
time (s) 94.37 118.62 101.99 118.18 155.14 96.44

End effector
Rise time (s) 74.86 97.53 94.39 105.02 125.38 90.46

End effector
Settling time (s) 94.37 114.02 99.81 118.18 147.14 94.22

Overshoot (%) 1.94 2.61 1.89 1.93 2.36 1.35
Execution time

(s) 125.17 148.92 140.78 146.02 201.68 124.70

TABLE V. Comparison of joint distances and keypoints distances in image
space over experiments for successful and failed experiments

Successful Failed (Image Space)

Roadmaps Joint
Space Learned Image

Space
Joint
Space Learned Image

Space
Number of

Experiments 18 18 18 8 8 8

Avg No. of
Waypoints 8 8 14 11 13 15

Avg. Joint
Distances

(radians) b/w
Waypoints

0.25 0.3 0.32 0.27 0.29 0.35

Avg. Keypoints
Distances

(pixels) b/w
Waypoints

166.77 163.41 86.03 135.17 143.24 86.35

Avg. Joint
Distances

(radians) over
Entire Path

2.10 2.37 4.42 2.92 3.52 5.33

Avg. Keypoints
Distances

(pixels) over
Entire Path

1307.02 1257.02 1210.93 1419.93 1691.26 1291.2

Joint Distance
(radians)

Traversed To
Move 1000

pixels in image
space

1.6 1.9 3.71 2.1 2.1 4.12

Learned roadmaps avoid this by producing motions that better
match the robot’s capabilities.

Table VI depicts the performance of learned and image
space roadmaps in multi-obstacle scenarios. While image
space failed to plan in 50% of the cases, all successful plans
led to successful control; the learned roadmap succeeded in
both planning and control for all cases. The APF controller
failed to converge in all scenarios.

Despite its simplicity, APF failed in all cases, where the
robot started between closely spaced obstacles, getting trapped
in local minima and oscillating between attractive and oppos-
ing repulsive forces, without reaching the goal. These failures
highlight the limitations of reactive methods in cluttered scenes
and the necessity of global planners like our roadmap-based
approach for collision avoidance.

Table VII presents control performance in a proof-of-
concept scenario involving simulated real-world object, as
described in Sec. V-A6. Here, the path planned by the image
space roadmap led to a collision with the object, despite a
defined safety margin. Further experiments are needed to con-
clusively determine why the robot collided despite a collision-
free planned path.

In summary, both roadmaps exhibit unique benefits. The im-
age space roadmap enables faster execution when successful
but lacks reliability, while the learned roadmap offers greater
robustness by leveraging joint displacement-like distances. The
choice depends on the application context.

https://drive.google.com/file/d/1rnBGJeI8it6Vs-4VtHuLjEVLhfE7i4lc
https://www.youtube.com/watch?v=T-9qihoV6JQ
https://github.com/JaniC-WPI/KPDataGenerator

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2025

TABLE VI. Performance comparison of learned and image space roadmaps
and APF with multiple obstacles

Roadmap Successful
Planning.

Successful
Control.

System
Rise

Time (s)

System
Settling
Time (s)

EE Rise
Time (s)

EE
Settling
Time (s)

Overshoot
(%)

Exec.
Time

(s)

Learned 4/4 4/4 96.53 99.68 95.98 97.83 0.87 121.65
Image Space 2/4 2/2 89.1 102.6 89.1 100.05 0.43 122.45

APF NA 0 NA NA NA NA NA NA

TABLE VII. Performance comparison for learned and image space roadmaps
with proof-of-concept real-object scenario

Roadmap Successful
Planning.

Successful
Control.

System
Rise

Time (s)

System
Settling
Time (s)

EE Rise
Time (s)

EE
Settling
Time (s)

Overshoot
(%)

Exec.
Time

(s)

Learned 1/1 1/1 34.8 75.8 28.9 75.8 3.24 97.5
Image Space 1/1 0/1 NA NA NA NA NA NA

VI. CONCLUSION AND FUTURE WORK
In conclusion, this work introduced a novel framework

for collision-free motion planning of robotic manipulators
that relied solely on visual features, eliminating the need
for explicit robot models or encoder feedback. The learned
roadmap offered smoother, more reliable transitions, and due
to its joint displacement-based distance definition, the paths
it generated maintained joint-space holonomy when it existed.
In contrast, the paths produced by the image space roadmap
sometimes failed to maintain joint-space holonomy, even when
holonomy existed in the image space. However, the image
space roadmap provided faster transient responses and sim-
plicity, making it advantageous for applications where speed
and computational efficiency were prioritized.

As a future direction, to extend our approach to higher
DoF and out-of-plane motion, we plan to reuse the same
data collection pipeline, existing data collection pipeline while
capturing trajectories that span the full 3D workspace. To
ensure safe interaction with real-world obstacles, we plan to
estimate monocular depth replacing the 2D safety polygon with
a 3D bounding box. To improve keypoint robustness under
environmental and self-occlusion, we aim to integrate a graph-
based model to enforce spatial consistency within the keypoint
detection network. We are also exploring the extension of this
pipeline to soft and continuum robotic systems, specifically
a soft origami arm. Additionally, We are also investigating a
quantitative formulation to characterize and analyze the role of
non-holonomic constraints in image-based motion planning.

REFERENCES

[1] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE TRO, 1996.

[2] K. Hashimoto, “A review on vision-based control of robot manipulators,”
Adv. Robot., 2003.

[3] B. Calli and A. M. Dollar, “Vision-based precision manipulation with
underactuated hands: Simple and effective solutions for dexterity,” in
IEEE/RSJ IROS, 2016.

[4] H. Cuevas-Velasquez, N. Li, R. Tylecek, M. Saval-Calvo, and R. B.
Fisher, “Hybrid multi-camera visual servoing to moving target,” in
IEEE/RSJ IROS, 2018.

[5] P. Ardón, M. Dragone, and M. S. Erden, “Reaching and grasping of
objects by humanoid robots through visual servoing,” in EuroHaptics.
Springer, 2018.

[6] J. Lai, K. Huang, B. Lu, and H. K. Chu, “Toward vision-based adaptive
configuring of a bidirectional two-segment soft continuum manipulator,”
IEEE/ASME AIM, 2020.

[7] M. Luo, R. Yan, Z. Wan, Y. Qin, J. Santoso, E. H. Skorina, and C. D.
Onal, “Orisnake: Design, fabrication, and experimental analysis of a 3-d
origami snake robot,” IEEE RA-Letters, 2018.

[8] P. Liu, M. N. Huda, L. Sun, and H. Yu, “A survey on underactuated
robotic systems: bio-inspiration, trajectory planning and control,” Mecha-
tronics, 2020.

[9] A. Gandhi, S.-S. Chiang, C. D. Onal, and B. Calli, “Shape control of
variable length continuum robots using clothoid-based visual servoing,”
in IEEE/RSJ IROS, 2023.

[10] I. Chavdarov, V. Nikolov, B. Naydenov, and G. Boiadjiev, “Design and
control of an educational redundant 3d printed robot,” in IEEE SoftCOM,
2019.

[11] C. D. Onal, M. T. Tolley, R. J. Wood, and D. Rus, “Origami-inspired
printed robots,” IEEE/ASME TRM, 2014.

[12] M. A. M. Adzeman, M. H. M. Zaman, M. F. Nasir, M. Faisal, and
S. M. M. Ibrahim, “Kinematic modeling of a low cost 4 dof robot arm
system,” Intl. J. of Emerging Trends in Engineering Research, 2020.

[13] H. Wang, B. Yang, J. Wang, X. Liang, W. Chen, and Y.-H. Liu, “Adaptive
visual servoing of contour features,” IEEE/ASME TRM, 2018.

[14] D. Navarro-Alarcon and Y.-H. Liu, “Fourier-based shape servoing: A
new feedback method to actively deform soft objects into desired 2-d
image contours,” IEEE TRO, 2017.

[15] A. Gandhi, S. Chatterjee, and B. Calli, “Skeleton-based adaptive visual
servoing for control of robotic manipulators in configuration space,” in
IEEE/RSJ IROS, 2022.

[16] S. Chatterjee, A. C. Karade, A. Gandhi, and B. Calli, “Keypoints-
based adaptive visual servoing for control of robotic manipulators in
configuration space,” in IEEE/RSJ IROS, 2023.

[17] S. Chatterjee, D. Doan, and B. Calli, “Utilizing inpainting for training
keypoint detection algorithms towards markerless visual servoing,” in
IEEE ICRA, 2024.

[18] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE TRO, 1996.

[19] A. Candra, M. A. Budiman, and K. Hartanto, “Dijkstra’s and a-star in
finding the shortest path: A tutorial,” in IEEE DATABIA, 2020.

[20] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” IJRR, 2014.

[21] Z. Zhao, S. Cheng, Y. Ding, Z. Zhou, S. Zhang, D. Xu, and Y. Zhao, “A
survey of optimization-based task and motion planning: from classical
to learning approaches,” IEEE/ASME TRM, 2024.

[22] A. Orthey, C. Chamzas, and L. E. Kavraki, “Sampling-based motion
planning: A comparative review,” ARCRAS, 2024.

[23] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for
motion planning with constraints,” ARCRAS, 2018.

[24] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with
provable bounds on sub-optimality,” NIPS, 2003.

[25] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” in IEEE ICRA, 2010.

[26] S.-O. Park, M. C. Lee, and J. Kim, “Trajectory planning with collision
avoidance for redundant robots using jacobian and artificial potential
field-based real-time inverse kinematics,” IJCAS, 2020.

[27] W. Liu, H. Niu, M. N. Mahyuddin, G. Herrmann, and J. Carrasco, “A
model-free deep reinforcement learning approach for robotic manipula-
tors path planning,” in IEEE ICCAS, 2021.

[28] D. Zhou, R. Jia, H. Yao, and M. Xie, “Robotic arm motion planning
based on residual reinforcement learning,” in IEEE ICCAE, 2021.

[29] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE RA-Letters, 2019.

[30] M. Zeller, R. Sharma, and K. Schulten, “Vision-based motion planning
of a pneumatic robot using a topology representing neural network,” in
IEEE ISIC, 1996.

[31] Y. Mezouar and F. Chaumette, “Path planning in image space for robust
visual servoing,” in IEEE ICRA, 2000.

[32] D. Lee, H. Lim, and H. J. Kim, “Obstacle avoidance using image-based
visual servoing integrated with nonlinear model predictive control,” in
IEEE CDC and ECC, 2011.

[33] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in IEEE
ICRA, 2000.

[34] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer,
D. Fox, and S. Birchfield, “Camera-to-robot pose estimation from a
single image,” in IEEE ICRA, 2020.

[35] Z. Zhang, “A flexible new technique for camera calibration,” IEEE PAMI,
2000.

[36] Camera calibration and 3d reconstruction. [Online]. Available: https:
//docs.opencv.org/4.x/d9/d0c/group calib3d.html

[37] S. Haddadin, “The franka emika robot: A standard platform in robotics
research,” IEEE RAM, 2024.

[38] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,
Principles of robot motion: theory, algorithms, and implementations.
MIT press, 2005.

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Model-based Motion Planning

	Methodology
	sample: Executed Trajectories as Proxy Samples
	k-nearest: Learned and Image Space Metrics
	Dataset generation for network model
	Neural Network for Learned Distance Metric

	coll_free:Image-Based Collision Checking
	Adaptive Visual Servoing

	Experiments and Observations:
	Experimental details
	Generating Samples
	 Building the Roadmap
	Obstacle Representation and Path Planning
	Control Experiment Set-up for Single Obstacle
	Control Experiment Set-up for Multiple Obstacles
	Control Experiment Set-up for Virtual Shelf

	Roadmap and Path Planning Experiments
	Distribution of Joint Distances of Edges for Different Roadmaps
	Average Joint Distances for Planned Collision-Free Paths
	Planned paths for Control Experiments

	Control Experiments

	Conclusion and Future Work
	References

