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COVER: COverage-VErified Roadmaps for Fixed-time Motion Planning
in Continuous Semi-Static Environments
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Abstract— Having the ability to answer motion-planning
queries within a fixed time budget is critical for the widespread
deployment of robotic systems. Semi-static environments—where
most obstacles remain static but a limited set can vary across
queries, such as bins or packages in warehouses—exhibit
structured variability that can be systematically exploited to
provide stronger guarantees than in general motion-planning
problems. However, prior approaches in this setting either
lack formal guarantees or rely on restrictive discretizations
of obstacle configurations, limiting their applicability in realistic
domains. This paper introduces COVER, a novel framework that
incrementally constructs a coverage-verified roadmap in semi-
static environments. By partitioning the obstacle configuration
space and solving for feasible paths within each partition, COVER
systematically verifies feasibility of the roadmap in each partition
and guarantees fixed-time motion planning queries within the
verified regions. We validate COVER with a 7-DoF simulated
Panda robot performing table and shelf tasks, demonstrating
that COVER achieves broader coverage with higher query success
rates than prior works.

I. INTRODUCTION

Motion planning [1] is a core function of robotics, enabling
manipulators to plan collision-free, reliable trajectories in
complex workspaces. In industrial domains, robots often oper-
ate in semi-static environments—settings where the majority
of the workspace remains fixed, while smaller obstacles such
as bins and packages vary across tasks. These environments
are characterized by the repetitive nature of the tasks per-
formed, such as moving similar objects between shelves or
tables. In such scenarios, robots must generate motions within
strict time budgets while minimizing downtime.

For instance, consider the scenario illustrated in Fig. 1,
where a robot must retrieve a cylindrical object from a shelf
while two additional movable obstacles can occupy arbitrary
positions within the same shelf region. Such semi-static
variability frequently arises in real-world settings, particularly
in warehouse and industrial environments, where bins and
packages are repeatedly rearranged between tasks.

Preprocessing-based methods exploit this structured vari-
ability to accelerate query-time planning and, in some cases,
achieve fixed-time performance. Experience-based frame-
works [2]-[5] improve efficiency by reusing prior solutions
but provide no coverage guarantees—that is, they cannot
certify whether a valid obstacle arrangement will admit a
solution. Fixed-time motion planners [6], [7] do provide
formal guarantees, but require restrictive assumptions such as
discretizing the obstacle configuration space and assuming all
movable obstacles to be identical. These assumptions limit
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Fig. 1: (a) Semi-static motion-planning problem: the robot must grasp a
white cylinder while two obstacles may lie anywhere in the dark-blue region.
(b)—(d)) Three sampled instances. COVER guarantees that for all covered
placements, a valid motion plan can be retrieved.

their applicability to realistic domains, where obstacles vary
continuously in both size and placement.

In this work, we propose COVER, a roadmap-coverage
framework within the fixed-time motion planning domain that
extends beyond discretized formulations to handle continuous
problem spaces while still affording fixed-time guarantees.
Given a semi-static environment represented as a continuous
set of possible obstacle placements, COVER incrementally
constructs a roadmap in the robot’s configuration space. By
explicitly associating robot motions on the roadmap with the
corresponding obstacle configurations that invalidate them,
COVER systematically verifies coverage of the problem space.
This enables fixed-time query resolution even when the
obstacle configurations are defined in a continuous domain.

We evaluate COVER in simulation using a 7-DoF manip-
ulator performing object-picking tasks from a shelf and a
table. Our experiments show that COVER achieves broader
coverage in continuous domains than prior methods, while
maintaining reasonable preprocessing times. COVER naturally
extends to heterogeneous obstacle sizes, demonstrating its
flexibility beyond uniform setups.

The contributions of this work are threefold: (i) we intro-
duce the COVER roadmap-coverage framework that provides
fixed query-time guarantees in continuous obstacle spaces,
(i) demonstrate its ability to handle obstacles of varying
sizes and continuous placements, and (iii) develop a problem-
space coverage estimator that systematically verifies the exact
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coverage ratio of precomputed paths or roadmaps.

II. RELATED WORK

There have been several motion planning approaches that
leverage preprocessing to accelerate query-time performance.
The most well-known are roadmap planners [8]-[10], which
construct a roadmap of collision-free configurations during
an offline phase and then answer multiple start—goal queries
on the same graph. While highly effective in static environ-
ments, these methods degrade when obstacles change, as the
roadmap may no longer reflect the true free space and must
be recomputed or repaired.

To address this limitation, the class of dynamic roadmaps
was proposed. Dynamic roadmap methods extend multi-
query planning to environments that change between queries
by maintaining mappings from workspace regions to
configuration-space edges [11]. When a new environment is
encountered, these mappings allow for rapid invalidation of af-
fected edges, enabling efficient online updates. This has been
implemented using hashing techniques for fast collision de-
tection [12], [13] or hierarchical decompositions for scalable
updates [14]. Although highly efficient, these methods are
designed for arbitrary dynamic environments—any workspace
subregion can potentially be occupied — and therefore do
not target the structured variability of semi-static settings. As
a result, they emphasize fast updates rather than certifying
coverage.

In the class of learning-based methods, experience-based
planners accelerate planning by reusing information from
previously solved problems. This information may take the
form of a library of paths [3], [5], a roadmap enriched with
prior experience [2], [15], or a collection of local samplers
that bias future queries [4], [16]. These approaches generally
assume that planning problems are drawn from an unknown
distribution and attempt to maintain a representative set
of solutions or sampling strategies that can be adapted to
new queries [5], [17]. While effective in practice, they do
not explicitly exploit the structured variability of semi-static
environments. Instead, they focus on statistical generalization
across distributions of problems, without offering guarantees
of full coverage in the space of obstacle configurations.

Fixed-time motion planning methods [6], [7] are most
closely related to our work. These approaches specifically
target semi-static environments by assuming known apriori
distributions of movable obstacles and guarantee that queries
can be answered within a fixed-time budget through exten-
sive offline preprocessing. However, existing formulations
discretize the obstacle arrangement space, which restricts
their applicability in realistic scenarios where obstacles can
vary continuously. Moreover, recent formulations [6] impose
strong homogeneity assumptions, such as requiring all obsta-
cles to occupy equivalent locations or share identical shapes,
further limiting their use in heterogeneous settings.

III. PROBLEM STATEMENT AND NOTATION
A. Geometric Motion Planning

Let ¢ € C denote a configuration and configuration space
(C-space) of the robot. The robot configurations in collision

with obstacles in the workspace is given by
Cobs = {q € C | R(q) "N WO # (0}

where R(q) C R? is the workspace occupancy of the robot at
configuration ¢, and WO C R? denotes the set of workspace
obstacles.! Conversely, valid robot configurations in C-space
is defined as Cgee = C \ Cops-

Given gyart € Ciree as the start configuration, Ceal € Ciree
as the goal region’, and WQ as the workspace obstacles, a
geometric motion-planning problem instance is specified by
P = (gstart, Cgoal, WO). The task is to find a continuous path
7 : [0,1] = Chee such that 7(0) = ggare and 7(1) € Cyou, if
one exists.

B. Geometric Motion Planning in Semi-Static Workspaces

A semi-static workspace contains two disjoint sets of
obstacles: fixed (static) obstacles O; and movable obstacles
Om = {01,02,...,0,} whose configurations may vary
across planning queries but remain fixed during execution.
Each arrangement m of the movable obstacles from the space
of possible arrangements M induces a distinct collision-free
space, Cree () and thus a distinct geometric motion-planning
instance given in Equation 1.

p(m) = (QStarta Cgoah O¢, O, (m)) (nH

Here, O,,(m) indicates the occupancy of the movable
obstacles after assuming an arrangement m € M. Now,
given a start configuration ¢,, and a goal region, Cyoq the
semi-static motion-planning problem is to find, for every
m € M, a continuous path 7., : [0,1] — Cgee(m) such
that 7,,,(0) = gtare and 7y, (1) € Cyou, if one exists.

IV. METHODOLOGY

Exhaustively solving the motion-planning problems for
every possible arrangement m € M for a semi-static
workspace is infeasible, since the space of movable obstacle
configurations is continuous and thereby, infinite. Instead,
COVER builds on the key intuition that a single solution path
can remain valid across infinitely many obstacle arrange-
ments. For instance, in Fig. 1 (b) and Fig. 1 (c), the same
precomputed path is feasible despite variations in obstacle
placement. Leveraging this observation, COVER introduces a
framework for exactly quantifying the portion of M that a
given roadmap can solve, which we define as problem-space
coverage.

Section IV-A formalizes this concept and outlines the
key ideas behind the computation for roadmaps in semi-
static environments. Building on this foundation, Section V-
B presents our coverage-informed roadmap construction
algorithm, which incrementally maximizes problem-space
coverage by systematically addressing uncovered regions of
the obstacle configuration space. Finally, in Section IV-C, we
describe how the resulting COVER roadmap enables fixed-
time query resolution for arbitrary arrangements of movable
obstacles.

I'Self-collisions or kinematic constraints can be encoded similarly.
2In our setting the goal region is always a finite set of configurations.



A. Problem Space Coverage Estimation

Formally, a roadmap is defined as a graph G = (V, E)
defined in the configuration space Cge. of the robot [18].
Each vertex v € V corresponds to a robot configuration
q € Ciee, while each edge e € F represents a collision-free
local (straight-edge) path connecting two vertices. Roadmaps
provide a compact representation of paths and form the basis
of multi-query motion planning. [2], [8], [19].

In static environments, where Cgee remains unchanged, the
validity of roadmap vertices and edges persists, ensuring that
any previously feasible path between a start configuration g,
and goal region Cgoy remains valid. However, in semi-static
environments, Cre (m) depends on the specific arrangement
of movable obstacles O,,. For a given roadmap G, we
define M,y as the subset of arrangements that always admit
a collision-free path from gga t0 Cgoa. Its complement,
Muncoy = M\ Mooy, consists of arrangements that invalidate
every collision-free path on G.

Thus, the problem-space coverage of G (Equation 2) is
defined as the proportion of obstacle arrangements, out of all
possible arrangements in M, that do not invalidate all paths.

Vol(Mey)
Vol(M)

where Vol(-) denotes the measure of a subset of obstacle
configurations. This metric captures the proportion of the
semi-static problem space that is guaranteed to be solvable
with the given roadmap. We note that it is possible that certain
regions of M might generate infeasible problems [20].

To compute Moy for a given roadmap G, we first
construct a decomposition of M based on the swept volumes
of the edges in G in Sec. IV-A.1, and then determine the
decomposed partitions covered by G in Sec. [V-A.2.

Coverage(G) = )

Algorithm 1: PartitionObstacleSpace

Input: Roadmap G = (V, E), One movable obstacle
0;, obstacle configuration space M,
Output: Decomposition tree T; for obstacle o;
1 E+0

2 foreach e € E do
// Compute swept volume of robot motion e

3 SV + SweptVolume(e)
// Locations of o0; that invalides edge e
4 € + £ UMinkowskiSum(SV,0)
// Build Decomposition Tree for o;
5 T; + BinarySpacePartitionTree(f)
6 return 7'

1) PFartitioning the Obstacle Space: We begin by com-
puting binary partitions of the configuration space for each
edge of the roadmap induced by a single movable obstacle,
denoted M;, which we represent with a decomposition tree
T; (a binary space partitioning tree), shown in Fig. 2. Each
tree T; compactly encodes how different placements of an
obstacle o; affect the validity of the edges’® of G.

3The decomposition trees are not restricted to edges. The same procedure
in Alg. 1 can also be applied to start and goal vertices to identify obstacle
configurations that invalidate them.
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Fig. 2: (a): Simple example with a roadmap containing two edges. Dashed
lines indicate the approximate end-effector trajectory of the robot along
each edge. (b): Envelopes generated for the two edges. (¢) Envelopes of
the edges used for partitioning the obstacle configuration space of o; into
disjoint regions. These partitions are organized in a binary space partitioning
tree, with each leaf corresponding to an equivalent binary signature.
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The central idea is that every edge e € G dichotomizes
the obstacle configuration space M, into two complementary
subsets: those placements of o; that invalidate e, and those that
do not. To construct the partition, we follow the procedure
in Alg. 1. In particular, lines 3—4 compute, for a specific
obstacle o; and edge e, the subset of configurations that render
e invalid.

For each edge e = (¢1,92) € E, we approximate the
swept volume of the robot’s motion between its endpoints
as SV qu[qhqﬂ R(q), where R(q) C W denotes the
workspace occupied by the robot at configuration q. We then
compute the Minkowski sum of o; with SV, which yields
the set of obstacle configurations &; that cause a collision
with the swept volume. We refer to these sets as envelopes,
following [6]. Examples of & and & are shown in Fig. 2
(a).

The envelopes £ = {&1, &, ...} serve as splitting surfaces
that recursively partition M. The resulting decomposition
tree subdivides M into disjoint regions, with the left child
of each node representing placements that invalidate an
edge and the right child representing placements where the
edge remains valid. This subdivision yields a hierarchical
representation of M;, where the leaves correspond to regions



of obstacle placements that exhibit identical edge-validity
patterns, as illustrated in Fig. 2 (b).

The leaves of this decomposition tree naturally admit a
binary encoding, where each leaf corresponds to a unique
signature. Each signature records the edges of the roadmap
obstructed when placing the obstacle within that region as
a binary vector b; € {0, 1}/Fl. For example, the signature
11 indicates that both edges are invalidated, whereas 00
implies that neither is affected. The j-th entry of b; specifies
whether edge e; € E is blocked (1) or remains valid (0). This
signature-based representation enables us to reason about
obstacle placements algebraically rather than geometrically,
forming the basis for combining partitions across multiple ob-
stacles and ultimately identifying the covered and uncovered
subsets of the arrangement space.

2) Calculating M neon: We can now leverage these
binary signatures from the decomposition trees to determine
which obstacle arrangements render the entire roadmap in-
valid. This procedure is outlined in Alg. 2. When multiple
movable obstacles are considered, the per-obstacle signatures
are combined into a composite signature (line 6). Specifically,
given signatures by, bo,..., b, € {0, 1}‘E‘ for n obstacles,
the composite signature is defined as

b=b;VbyV---Vb,,

where V denotes the element-wise logical OR. Thus, the
j-th entry of b equals 1 if edge e; € E is invalidated by
at least one selected obstacle placement. Each composite
signature corresponds to the subset of obstacle arrangements
that invalidate the same set of edges.

Having obtained a compact decomposition of M, we can
now identify which partitions (i.e., obstacle arrangements)
invalidate the roadmap G. To this end, we construct a binary
representation (lines 7-9) of all s—t paths in the roadmap
II = {m,m2,...,mp}.

Each path 7; € II can be similarly encoded by a binary
vector p; € {0,1}/EI where the k-th entry equals 1 if
edge e, € E belongs to the path and O otherwise (lime 8).
Collecting these vectors, we define the path—edge incidence
matrix

2
P2
P=| | e{0,1}»*El
Py
Now consider a composite signature b € {0, 1}/€l, where

br = 1 indicates that edge e; is invalidated by the corre-
sponding obstacle arrangement. To determine whether this
arrangement invalidates all paths on the roadmap, we evaluate
the dot product of column vector b with the path—edge
incidence matrix as given in Equation 3.

v = Pb. A3)

If v; > 0 for every path 7; € II, then all paths are blocked
by at least one invalidated edge, and the region corresponding
to b is classified as uncovered. Otherwise, if there exists some
j with v; = 0, path 7; remains feasible in that region, the

Algorithm 2: DetectUncoveredPartitions

Input: Roadmap G = (V, E),

Movable Obstacles O,,,

Output: Uncovered Obstacle Arrangements C'

// Get paths from the graph
1 IT = {m,ms,...} = DepthFirstSearch(G)
2T+ 0

// Get decomposition tree for each obstacle
3 foreach o;, M; € O,,, do

L T+ TUPartitionObstacleSpace(G,o;)

5 C < GetAllCombinations(T)
6 B + GenerateAllCompositeSignatures(C)
7 foreach 7; € Il do

// Getting a vector that represents which

edges constitute path

8 | p; < BinaryVector(m;, E)

// Adding these vectors to path-edge
incidence matrix

9 Pli] « p;

10 foreach b € B do

// If dot product is

non-zero, the

combination of partitions
1 v[i] < Pb
12 | if v[i] is not an all-ones vector then

// arrangements in C[i] covered by G
L remove C[i] from C

invalidates m;

13

14 return C

roadmap continues to provide a collsion-free path (lines 12—
13).

By iterating over all composite signatures and classifying
each as covered or uncovered, we can explicitly compute
Moy and Moy, Which in turn yield the problem-space
coverage defined in Equation 2.

Additionally, if G can be informed of arrangements in
Mncov, efforts can be spent toward searching for collision-
free paths in C for problems induced by these arrangements.
For each unresolved arrangement set ¢ € C' that remains
after filtration (lines 10-13), we initiate a composite motion-
planning problem where the movable obstacles assume all
arrangements in ¢ simultaneously (O,,(c)). Formally, this
problem is denoted as P = {p(m) | m € c}, where p(m) is
a semi-static motion planning problem when Oy, assumes an
arrangement m (Equation 1). For each successful attempt, G
is augmented with additional vertices and edges that help to
resolve these composite problems and improve its problem
space coverage. This is illustrated in Fig. 3.

B. Building the Roadmap

COVER computes a coverage-informed roadmap through an
iterative procedure to maximize its problem-space coverage.
The pipeline for computing G is summarized in Alg. 3.

We begin by initializing the roadmap G with the start and
goal configurations as vertices in line 1. For each movable
obstacle o; € O,,, the corresponding decomposition tree 7;
is constructed using Alg. 1. This subroutine partitions the
configuration space M; into multiple regions according to the
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Fig. 3: Demonstration of COVER with two movable obstacles 01 and o2. (a)
The roadmap G is initialized with start and goal configurations. M7 and M2
are partitioned into subregions (Alg. 1), resulting in distinct subdivisions
due to different obstacle sizes. (b) A path (green edge) is added under the
assumption of no movable obstacles, after which the decomposition trees
of M1 and My are refined with the new edges. (¢) A composite motion
planning problem is formed by o1 assuming configurations that invalidate
the new edge and o2 assuming configurations that block goal configuration
g2. A feasible path is then added to G. The process repeats until Muyncoy
is exhausted or a set number of consecutive failures occurs.

invalidation of roadmap edges, start, and goal configurations
(Fig. 3 (a)). At this stage, the arrangements that render all
start or goal configurations invalid could be obtained. These
arrangements correspond to infeasible problems and can
be excluded to prevent expending computational effort on
unsolvable cases.

As an initialization step, a path is computed in the en-
vironment with no movable obstacles (O,,(f)) and added
to G in lines 5—6. The decomposition trees are updated to
incorporate the new edges, leading to further subdivisions in
M and M, as shown in Fig. 3 (b). Finally, Alg. 2 is used
to extract the set of arrangements C' that invalidate all the

Algorithm 3: Computing COVER
Input: Start configurations V;, Goal configurations
Vy, Static obstacles O, Movable obstacles
Om,
Output: Roadmap G = (V, E), Decomposition trees
T, Unverified obstacle arrangements C
1 G« InitializeRoadmap(V;,Vy)

// Generate Decomposition trees for obstacle

configuration spaces
2 T + PartitionObstacleSpace(G,O,,)
// Motion-planning problem with no movable
obstacles
3 T < RepairRoadmap(G, On(0),0f)
4 AddPath(G, )
// Get all arrangements in Muncov
5 C «+ DetectUncoveredPartitions(G,Oy,)
6 failures <— 0
7 while C' # () do
8 ¢ < Dequeue(C)
// Remove invalid edges due to obstacle
arrangements in ¢
9 G’ + RemovelInvalidEdges(G,c)
// Initialize motion-planning problem with
obstacles assuming all arrangements in ¢
10 T < RepairRoadmap(G’, Oy, (c), Oy)
// Path found if planning is successful

1n | if 7 # 0 then

12 Addpath(G, )
// Update the partitions for new edges
13 T < PartitionObstacleSpace(G,Oy,)

// Remove arrangements covered by G

after augmenting

14 C +
DetectUncoveredPartitions(G,O,,)
15 failures < 0
16 else
// Motion planning failed for Op(c)
17 add ¢ back to C
18 failures < failures +1
19 if failures == |C| then
// Cannot resolve any arrangements
20 L return G, T, C

// Paths found for all obstacle arrangements

21 return G, T, ()

paths currently in G.

After the unverified arrangement set C' is obtained, the
algorithm enters an iterative repair loop. In each iteration, we
dequeue an arrangement set ¢ € C, constructed by choosing
one leaf node from each obstacle’s decomposition tree. The
edges that are invalidated by the arrangements in ¢ can be
obtained through its composite signature. Then in line 11, we
derive a restricted roadmap G’ by removing all edges of G that
are invalidated by the placements in c. Since the arrangements
in ¢ disconnect the start vertices from the goal vertices, we
attempt to reconnect the disconnected components in line 12.
A motion planner is invoked for the composite problem in



which the movable obstacles assume all the arrangements in
¢ (O (c)). If a feasible path 7 is found for this problem,
it is added to G, whose addition ensures that G contains a
valid path for any arrangement in c. To check if 7 resolves
arrangements ¢ ¢, Alg. 2 is invoked again to filter out these
arrangements that is covered by the updated G.

Conversely, if no path can be found for the composite prob-
lem during repair, the arrangement set ¢ remains unresolved.
This is recorded as a failure before proceeding to the other
sets in C' for subsequent iterations. This process repeats until
either all obstacle arrangements are covered, or it terminates
after a fixed number of consecutive failures, indicating that the
remaining set C. This termination condition prevents COVER
from running indefinitely.

C. Querying the roadmap

After computing the coverage-informed roadmap G and
the decomposition trees for the obstacle configuration spaces,
collision-free paths can be retrieved from the roadmap for
a given arrangement of obstacles m € M.,o. Since edge
invalidation is already encoded during the offline computation
of the decomposition trees (Alg. 1), the collision-checking
in the online phase reduces to inexpensive binary space
partitioning tree traversals. For each movable obstacle o; €
O, the respective decomposition tree T is traversed to locate
the partition containing the current configuration. The binary
signature b; associated with this partition directly specifies
the set of edges invalidated by o;. Then, the signatures from
the partition of each tree are then merged into the composite
signature b, which encodes the complete set of edges blocked
by the obstacle arrangement m.

Using the composite signature b together with the
path—edge incidence matrix P computed during roadmap
construction, we use Equation 3 to obtain v that identifies
which precomputed paths are invalidated by the arrangement
m. Any path 7; € II satisfying p; A b = 0 remains collision-
free and can be returned directly as the solution to the query.

V. THEORETICAL GUARANTEES

A. Fixed-Time Guarantees

Querying the roadmap can be performed within a fixed-
time budget tquery, oOffering the same guarantee as in [6].
As outlined earlier, two operations are required to recover a
collision-free path for a new obstacle arrangement m.

First, we identify the composite binary signature associated
with m, which requires traversing the decomposition trees.
Each traversal has complexity O(log|E|), where |E| is the
number of edges in the roadmap, and must be performed
n times for n movable obstacles. Second, the composite
signature is tested against the path set II via a matrix—vector
multiplication between a matrix of size |P| x |E| (the
path—edge incidence matrix) and a binary vector of size [E]x 1
(the signature). This operation has complexity O(|P| - |E]).
Thus, the overall complexity of answering a query is given
by

O(nlog|E| +|P| - |E])

Since the roadmap is precomputed and remains fixed
across all obstacle arrangements, the query time can be
deterministically upper-bounded by a constant ¢query-

B. Completeness Guarantees

Unlike [6], which guarantees that any problem solvable by
the underlying planner will yield a corresponding path in 11,
the current implementation of COVER cannot provide such a
strong completeness guarantee, since roadmap construction
terminates once all generated composite problems cannot be
resolved.

Therefore, the only completeness guarantee that COVER
can provide is the following: if an arrangement m € Moy,
then a valid collision-free path is guaranteed to exist in the
roadmap. For arrangements outside M.y, no paths exist on
the roadmap.

VI. EXPERIMENTS

In this section, we present the evaluation of COVER in
simulation on object-picking tasks using a Franka Emika
Panda manipulator. The problem space coverage achieved by
the generated roadmaps for these environments is compared
against the Alternative Paths Planner (APP). [6].

A. Experimental Setup

All experiments were conducted in Genesis [21] simulation
on a workstation with 4 NVIDIA A100 GPUs, 56-core
Intel Xeon CPU, and 128 GB RAM. For motion planning
and roadmap-based operations, we leverage the sampling-
based motion planning framework of Open Motion Planning
Library (OMPL) [22]. Furthermore, we obtain the spherical
approximation of the robot links using [23] and compute
the corresponding swept-spheres convex hulls as an approx-
imation of the volume swept by the robot trajectory. Since
the robot occupancy and obstacle configuration spaces are
modeled as polygonal meshes, we employ the methods in
MeshLib [24] for computing their mesh representation and
for the 3D Boolean operations for subdividing of obstacle
configuration spaces.

The following environments were used as the primary
testbeds for evaluating performance on object-picking tasks.
Fig. 4 shows the three environments of increasing complexity.
In Table-Pick (Fig. 4 (a)), the robot is placed on a
rectangular table with the cylindrical target object also on
the table surface, and the movable obstacles can be located
anywhere on that surface. In Shelf-High (Fig. 4 (b)), the
target object is placed on an upper rack of the shelf, with
two movable obstacles positioned within the same rack. In
Shelf-Low (Fig. 4 (c)), the target and obstacles are placed
on a lower rack, which introduces narrow passages that make
planning more challenging.

Each environment contains two spherical movable obsta-
cles: one fixed at a radius of 0.1 m, and another that varies
across 0.025,0.05,0.075,0.1 m. This yields four obstacle-
size pairs per environment — (0.025, 0.1), (0.05, 0.1), (0.075,
0.1), and (0.1, 0.1). We also ensure that, for every movable
obstacle, configurations that collide with the target object are
removed from its configuration spaces, so that the picking
task always admits at least one valid grasp.



Fig. 4: Semi-static environments with 2 movable obstacles, used for evaluat-
ing the object-pick tasks. (a) Table-Pick with target object and movable
obstacles on a table surface. (b) Shel f-High with target and obstacles on
the upper rack. (¢) Shelf-Low with target and obstacles on the lower
rack.

For all the setups, we consider four pre-grasp poses
for the panda end-effector—{pick-left, pick-right,
pick-front, pick-behind}. We do not include top
grasps, as they would trivialize the table scenario. We attempt
to find valid inverse kinematic solutions for each pre-grasp
pose. For Table-Pick, three grasps are valid, while in
Shelf-High and Shelf-Low, only two of the four pre-
grasps have a valid IK-solution.

B. Baseline Comparison

We use APP as our main baseline. APP constructs n + 1
disjoint paths for n movable obstacles during preprocessing.
If not enough disjoint paths can be found, APP handles the
remaining composite problems by splitting them into smaller
subproblems and generating overlapping paths, ensuring that
at least one path remains valid for any arrangement of the
movable obstacles. Since the original implementation targets
discrete placements and focuses on fast retrieval using hash
tables, we adapt APP to continuous spaces by redefining how
its envelopes are computed: rather than using occupancy grids,
we follow the same process as in Alg. 1, computing the
Minkowski sum of each path with the obstacles to obtain
the set of configurations that invalidate it. This adaptation is
done solely to compare preprocessing performance of APP
in generating paths against that of COVER.

We set a preprocessing timeout of 10 minutes for both
APP and COVER, which is sufficient for planning in these
environments with two movable obstacles and ensures that
preprocessing does not continue indefinitely. To enable a
direct comparison, we precompute and store disjoint paths
[6] for each run and use them to initialize both APP and
COVER. Using the same set of disjoint paths to warm-start
both methods ensures that they begin from an identical base
of solutions.

C. Results and Discussion

We present the problem-space coverage of the resultant
roadmaps generated using COVER and the set of paths with
APP. Each experiment is run for five trials per obstacle-size
pair to ensure consistency, with the median value reported
across trials.

A fundamental assumption of APP is that all movable
obstacles are the same size. Thus even in the cases that
the obstacles are different size, APP needs to assume that
they both have the size of the bigger obstacle [6]. In contrast,
COVER builds a decomposition tree per movable obstacle,
allowing us to capture the contributions of heterogeneous
obstacles individually.

For the paths returned by APP, we use the proposed
coverage estimation method Alg. 2 to quantify its problem
space coverage. The resulting median coverage values are
shown in Fig. 5 (a) for each experiment and obstacle-size pair.
Across all environments, the green bar marks the upper bound
on achievable coverage, obtained by filtering out problem
instances where no valid start or goal configuration exists.
To complement the results in Fig. 5 (a), we also report the
coverage achieved by both APP and our method relative to
the initial coverage provided by the disjoint paths used to
warm-start them in Fig. 5 (b).

For the object-picking tasks in the Table-Pick, both
COVER and APP record near-perfect coverage for the (0.1,0.1)
obstacle pair. For all smaller obstacle-size pairs, maximum
coverage is consistently achieved across all trials by COVER.
This outcome is supported by the availability of more valid
grasp solutions and the largely-free space in the table envi-
ronment.

In the Shelf-High setting, increasing the size of the
second obstacle reduces both optimal and achieved coverage,
as the narrow shelf sections make even single arrange-
ments challenging, let alone composite ones. Despite this,
our roadmaps achieve markedly higher coverage than the
overlapping paths generated by APP, as evident in Fig. 5.
For Shelf-Low, APP shows slightly higher coverage for
(0.1,0.1) in a small subset of trials due to its recursive
splitting of unresolved composites, but in most cases (see
Fig. 5 (b)) it fails to improve beyond the initial disjoint
paths. By contrast, COVER augments its roadmap in for
the (0.025,0.1) movable obstacle pair, yielding noticeable
coverage gains.

VII. DISCUSSION

We have presented COVER-a roadmap building method
that reasons about problem-space coverage in semi-static
environments. By associating roadmap edges with obstacle-
space partitions, COVER can explicitly certify subsets of
the arrangement space that are feasible, moving beyond
heuristic or discretization-based approaches. This treatment
of coverage allows the framework to handle heterogeneous
obstacle sizes and placements while still providing fixed-time
guarantees at query stage.

At the same time, several limitations remain. The pre-
processing cost grows with the number of obstacles and
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Fig. 5: Problem-space coverage across environments. (a) Median coverage of APP and COVER over five trials for each obstacle-size pair. Bars show median
values, with green bars denoting the maximum feasible coverage after filtering problems with all starts or all goals invalid. (b) Coverage relative to the
initial disjoint paths used to warm-start both methods. Dots indicate individual trial results for COVER and Squares correspond to trial results of APP.
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