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Expansion-GRR: Efficient Generation of Smooth Global
Redundancy Resolution Roadmaps

Zhuoyun Zhong, Zhi Li, and Constantinos Chamzas

Abstract— Global redundancy resolution (GRR) roadmap is a
novel concept in robotics that facilitates the mapping from task
space paths to configuration space paths in a legible, predictable,
and repeatable way. Such roadmaps could find widespread
utility in applications such as safe teleoperation, consistent path
planning, and motion primitives generation. However, previous
methods to compute GRR roadmaps often necessitate a lengthy
computation time and produce non-smooth paths, limiting their
practical efficacy. To address this challenge, we introduce a novel
method EXPANSION-GRR that leverages efficient configuration
space projections and enables a rapid generation of smooth
roadmaps that satisfy the task constraints. Additionally, we
propose a simple multi-seed strategy that further enhances the
final quality. We conducted experiments in simulation with a
5-link planar manipulator and a Kinova arm. We were able to
generate the GRR roadmaps up to 2 orders of magnitude faster
while achieving higher smoothness. We also demonstrate the
utility of the GRR roadmaps in teleoperation tasks where our
method outperformed prior methods and reactive IK solvers in
terms of success rate and solution quality.

I. INTRODUCTION

A robot is considered kinematically redundant for a specific
task if it has more degrees of freedom (DOF) than those
strictly required by the task [1]. As demonstrated in Fig. 1,
the 7-DOF Kinova robotic arm is asked to reach a target
object with a specific end-effector pose. Given its redundancy,
the robot can accomplish this task through multiple or
potentially infinite configurations. In general, the challenge
of redundancy resolution is determining which among the
many configurations to select as the most appropriate for the
task at hand.

In this work, we focus on the problem of global redundancy
resolution (GRR) for end-effector paths [2]. This resolution
enables a useful consistency property such that after any
cyclic paths, it will always lead the robot back to the
same configuration. For example, as shown in Fig. 2, upon
executing a closed ellipse path, the global method will always
lead the robot back to the original configuration while the
non-global method may take the robot to another one. This
feature ensures the robot’s motion is always repeatable and
more predictable during execution.

GRR roadmaps can potentially serve various purposes in
robotics, including streamlining repeatable tasks and motion
primitives generation. Moreover, a primary application lies in
teleoperation interfaces for humans. A common strategy of
teleoperation is to allow operators to issue motion commands
directly to the end effector space, while the teleoperation
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Fig. 1: The Kinova arm is tasked with reaching a 6-DOF pose to pick up
an object. For this task, the 7-DOF arm is kinematically redundant and can
reach the same object position with multiple configurations.

(a) Non-global Resolution

(b) Global Resolution

Fig. 2: (a) After a cyclic path, non-global resolution can lead to different
ending configurations from the same starting point. (b) Global resolution
results in consistent paths, where the robot always returns to the original
configuration.

system translates these commands into actual joint motion.
A GRR roadmap can aid such a system more effectively than
reactive Inverse Kinematics (IK) solvers, as it can effectively
recover from singularities and entrapment of local minima,
while exhibiting repeatable and predictable motions.

However, the computation of such a roadmap poses signifi-
cant computational challenges. Previously proposed methods
often required several hours to days to complete the pro-
cess [2] and often yield GRR roadmaps with lower smoothness.
To tackle this issue, we propose a novel method EXPANSION-
GRR that uses an expansion strategy to rapidly connect
adjacent nodes through configuration space projections. To
ensure continuity, we consider multiple nearest neighbors
during expansion. Also, we propose a multi-seed strategy to
further enhance roadmap quality.

Moreover, we introduce a straightforward yet effective
approach to demonstrate the practical utility of this roadmap
in teleoperation tasks. This method remains applicable even
in scenarios where the GRR roadmap lacks full continuity or
where users direct the robot to perform actions that might lead
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to illegal maneuvers, such as encountering a self-collision.
Through our experiments in simulation, we illustrate that the
proposed method not only generates higher-quality roadmaps
more efficiently but also outperforms advanced IK solvers in
teleoperation tasks, involving robots with up to 7 DOF.

Specifically, the contributions of this work include 1) the
development of a new expansion algorithm for efficiently
computing a smooth GRR roadmap, 2) the proposal of a multi-
seed strategy resulting in higher quality GRR roadmaps, and 3)
the establishment of a teleoperation pipeline utilizing the GRR
roadmap that surpasses prior methods. The implementation
of the proposed algorithm1 is provided as open source.

II. RELATED WORK

Redundancy resolution has historically been a core concept
in robotics [3]. Its applications span a wide spectrum, includ-
ing avoidance of singularities [4] and obstacles [5] as well as
facilitating teleoperation tasks [6]. Traditionally, redundancy
is resolved at the velocity level [7] or the torque level [3]
through the utilization of projection operators. However, our
work focuses on redundancy resolution at the position level
[2], [8] where we compute a direct mapping from task-space
point to robot configurations.

A commonly used strategy for addressing redundancy at
the local position level is IK solvers. Examples include
simple Jacobian-based IK solvers such as the Newton-Rapson
method or more recent IK-solvers, such as Relaxed-IK [9]
and Ranged IK [10], which incorporate more complicated
constraints including self-collisions and singularity avoid-
ance. These IK solvers exhibit high-speed performance,
often processing at several iterations per second. However,
they may get trapped in singularity or local minima during
teleoperation and generate suboptimal solutions due to their
lack of foresight and local problem-solving approaches.

Another category of methods that resolve redundancy at the
position level while often avoiding the local minima is single-
query planning methods [11]. Several planning methods
that also incorporate task-space constraints [12] have been
proposed, with a commonly used constrained sampling-based
motion planning framework [13]. Nonetheless, the produced
motions are often not repeatable as shown in Fig. 2a. To
address this challenge, [14], [15] focus on producing cyclic
repeatable paths that start and end at the same configuration.
However, these methods are tailored towards producing a
single repeatable path, while in this work, we aim to resolve
all possible task-satisfying paths simultaneously.

Roadmap-based methods, e.g., probabilistic roadmaps
(PRM) [16], compute an approximation of the connectivity of
the configuration space through random sampling. Given a
start and goal configuration, the roadmap can be queried with
graph search, and retrieve a collision-free path. Our work also
computes a roadmap but is tailored towards producing paths
that additionally satisfy task constraints and the paths are
smooth both in task space and configuration space. The work
that is most similar to ours is [2], which formulated the global

1https://github.com/elpis-lab/Expansion-GRR

redundancy resolution problem, and proposed an algorithm
to compute a GRR roadmap. In this work, we propose a new
algorithm that generates the GRR roadmaps more efficiently
and produces smoother paths. We also demonstrate how it
can be used for real-time motion planning as in teleoperation.

Teleoperation is still a critical control mode of robotics, es-
pecially in safety-critical applications like surgery. There are
many different teleoperating modes and interfaces depending
on the application [17]. A common teleoperation interface is
for humans to give commands in their natural 6-DOF task-
space, which then has to be retargeted, to a kinematically
different (and often redundant) robot [18]. To compute the
retargeting, a common strategy is to use reactive IK-solvers
[9], [10] and convert cartesian commands directly to the
robot’s configuration space. In this work, we showcase the
utility of the computed GRR roadmap in teleoperation tasks,
outperforming reactive-IK solvers, in terms of success rate
and solution quality.

III. NOTATIONS AND PROBLEM STATEMENT

A. Definitions And Notations

The general redundancy resolution problem aims to find a
mapM from the robot’s Task Space (T -space) to its Config-
uration Space (C-space). T -space represents the domain in
which the robot performs its tasks, typically R3 or SE(3),
while C-space contains all potential configurations available
to the robot. We will denote the elements of T -space as
p ∈ T and the elements of C-space as q ∈ C. Redundancy
indicates that the dimension of C-space is higher than that of
T -space, i.e., dim(C) > dim(T ).

1) Local Redundancy Resolution: A map M is a local
redundancy resolution if it is a transformation from p ∈ T to
q ∈ C such that FK(q) = p, where FK is the forward kinemat-
ics function. For example, IK solvers are local resolutions at
the point-wise level, and single-query planning methods are
local resolutions at the path level.

2) Global Redundancy Resolution: A map M is defined
as global redundancy resolution if it satisfies the FK(q) = p
constraint and additionally is an injective, continuous and
smooth2 function F : T → C. The injectivity property
ensures that each point in T -space is uniquely associated with
a single configuration in C-space, maintaining the consistency
of the result. Continuity and smoothness guarantee that a
small change in T -space does not lead to discontinuous or
large changes in C-space, resulting in continuous and smooth
robotic motions.

B. Approximate Global Redundancy Resolution

Given that finding an analytical form for F is intractable,
the proposed method focuses instead on computing an ap-
proximation [2]. An illustrative example is shown in Fig. 3
for the same 3-link planar manipulator of Fig. 2 that operates
in R2.

We first approximate T -space with a discrete roadmap
graph Gp = (Vp, Ep). For the 3-link manipulator example,Gp

2Technically, smoothness implies continuity, but since we measure them
separately, we mention them both here.

https://github.com/elpis-lab/Expansion-GRR
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(b) C-space Roadmap Gq

Fig. 3: An illustration of the roadmaps Gp and Gq . (a) The points p1, p2,
and p3 are neighboring samples in T -space, in this case, the end-effector
position in R2. (b) The solid lines indicate SMM of T -space points. A
roadmap Gq must select a single configuration qi from each manifold, and
additionally, ensure that the configurations, q1, q2 and q3 of adjacent points,
are ”close enough” to pertain continuity and smooth transition in C-space.

is shown in Fig. 3a, with the T -space points p1, p2, p3 ∈ Vp

as nodes and corresponding edges shown as dashed lines.
In Fig. 3b, the solid lines indicate the set of configurations
q that satisfy the constraints FK(q) = p induced by p1, p2,
and p3, also known as the self-motion manifolds (SMM) [19].
To compute an approximation for F , we need to build the
corresponding C-space roadmap Gq that satisfies the GRR
properties:

1) Injectivity: For each T -space vertex pi ∈ Vp, there is
only a single corresponding C-space vertex qi ∈ Vq , i.e,
choosing a single configuration q from each self-motion
manifold (as shown in Fig. 3b).

2) Continuity: For each T -space edge (pi, pj) ∈ Ep, the
configurations of the matching C-space edge (qi, qj) ∈
Eq satisfy the continuity constraint, formally defined
in Sec. IV-A and shown in Fig. 4.

3) Smoothness: Minimize the length ratio of C-space
edges (pi, pj) ∈ Ep to T -space edges (qi, qj) ∈ Eq .

Concretely, the problem we are concerned with is: Given
a graph Gp, compute a graph Gq that maximally satisfies 1),
2), and 3) while minimizing total computational time.

IV. METHODOLOGY

The main idea of the proposed method is to efficiently
build the roadmap Gq by expanding from the selected initial
configuration seeds. Again, for illustrative purposes, we will
employ a 3-link planar manipulator operating in R2 task space
(similar to that depicted in Fig. 2)

A. Continuity Constraint

To find a configuration q on the self-motion manifold that
satisfies the constraint imposed by a point p, i.e., FK(q) = p,
a common method employed is projection in C-space [8],
[20]. Starting with a given initial guess qguess, an optimizer
iteratively moves it closer to the desired self-motion manifold
until a configuration q within tolerance is found. In this paper,
as our projection operator, we use the Newton-Raphson IK,
which is a Jacobian pseudo-inverse projection. Also, to ensure
the returned configuration is valid a self-collision check is per-
formed. We denote this function as Projection(p, qquess).

Continuity ensures that a small variation in T -space does
not lead to a discontinuous motion in C-space. To achieve this,
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(b) Path in C-space

Fig. 4: An illustration of the continuity constraint. (a) The robot’s end-
effector follows a straight path Pp from pi to its adjacent point pj in
T -space (green). (b) The robot’s corresponding configuration path Pq from
qi to qj in C-space (green) can be computed by projecting the intermediate
configurations to their corresponding SMM in a bisection manner. Ideally, Pq

should stay ”close” to the straight line Lq delineated by qi and qj (black).

we enforce a motion constraint similar to [21]. An illustration
with the 3-link planar manipulator is provided in Fig. 4. Let us
assume we want to move the end effector from point pi to its
adjacent point pj in a straight line Pp in T -space. The motion
constraint ensures that the corresponding configuration path
Pq will not deviate significantly from the straight line Lq

delineated by qi and qj in C-space.
Fig. 4 illustrates visually how to perform this check. We

project the bisected configuration qbisect to the self-motion
manifold of the middle point pm and acquire the intermediate
configuration qm. To pass the continuity check, the deviation
between qm and qbisect, should be within a threshold. As
shown in Alg. 1 this process is repeated recursively to ensure
the continuity check passes up to an ϵ resolution.

Algorithm 1: IsContinuous(pi, pj , qi, qj)
/* Check threshold */

1 if Dq(qi, qj) < ϵ then
2 return true;
/* Bisect in T -space and C-space */

3 pm ← BisectP(pi, pj);
4 qbisect ← BisectQ(qi, qj);
5 qm ← Projection(pm, qbisect);
/* Check deviation */

6 if Max(Dq(qi, qm), Dq(qm, qj)) > c · Dq(qi, qj) then
7 return false;
/* Run recursively */

8 if IsContinuous(pi, pm, qi, qm)
9 and IsContinuous(pm, pj , qm, qj) then

10 return true;

11 return false;

In Alg. 1, BisectP finds the center of two T -space points,
and BisectQ finds the center of two C-space configurations.
The parameter c > 0.5, regulates the maximum deviation.
The value ϵ is the minimal threshold to stop the visibility
checking process. In this paper, we choose c and ϵ based on
the dimension of the C-space, i.e., c = 0.5

√
(dim(C)), and

ϵ = 0.05
√
(dim(C)). These values are chosen as reasonable

default values that scale with the dimension of the C-space.
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Fig. 5: An illustration of projecting from multiple neighbors. (a) The points
p1, p2, and p3 are neighboring points of p in T -space. (b) The solid lines
indicate the self-motion manifold of p. A weighted average qavg is computed
with neighbors’ corresponding configurations q1, q2, and q3 in C-space. It
is then projected onto the self-motion manifold to find q.

B. Projection From Multiple Neighbors

Now we describe the proposed method for adding new
configurations in an existing Gq roadmap, also illustrated
with an example in Fig. 5.

One strategy is to choose a configuration from a T -
space neighbor of p e.g., q3, and project it to get q, i.e,
q = Projection(p, q3). However, since point p has multiple
neighbors, projecting from a single one will create a bias
towards this neighbor. For example, Projection(p, q3) could
result in a configuration that is far from q1 and q2, resulting in
discontinuities. Instead, we adopt a more general strategy of
computing a weighted average configuration qavg in C-space
from all neighboring configurations q1, q2, and q3 as shown
in Fig. 5. By aggregating neighboring configurations, the
resulting q derived from Projection(p, qavg) has a higher
chance of being similar to all its neighbors. This similarity
feature aids in improving overall smoothness and continuity.

We now explain this process more formally, with the
pseudo-code in Alg. 2. First, we denote a function that returns
the k nearest neighbors neighbors of point p in the T -space
graph Gp, as NearestNeighbors(p, k,Gp). We also define
the T -space distance metric Dp adapted from [22] as:

Dp(pi, pj) = wt · DR3(ti, tj) + wo · DSO(3)(oi, oj),where
DR3(ti, tj) = ∥ti − tj∥

DSO(3)(oi, oj) = 1− |oi · oj |
(1)

and t, o denote the translation and orientation (represented by
a quaternion) component of a T -space point. ∥ti − tj∥ is the
standard Euclidean norm and |oi · oj | is the absolute value
of the inner product, while wt and wo are chosen weights
to scale the distances. In this paper, we set wt = 1 and
wo = 0.3. If T = R3, we set wo = 0.

After locating the neighbors of a point p, we collect a list
of configurations qs from them. Their corresponding weights
ws are determined based on their T -space distances ds and
scale towards the closer neighbors. Lastly, we compute the
weighted average configuration qavg and project it to find q.
C. Seeding Strategy

The techniques discussed in the previous sections can be
used to expand the roadmap Gq by incrementally adding new
nodes. However, the choice of the initial configuration(s) that
the roadmap is seeded with, also has a significant impact
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(a) Starting with One Seed
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q3
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q5
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(b) Starting with Multiple Seeds

Fig. 6: (a) From an initial seed q1 (green), q2, q8 to q4 are sequentially
generated (purple), and q3, q7 to q5 are also sequentially generated (blue).
For q6, however, expanding from either side will lead to a configuration
that is not continuous to the other. (b) Starting from seeds q1, q7, q8 and
q6 (green), deriving from an initial cyclic path, we could achieve a fully
connected T -space roadmap with all “elbow-down” configurations (purple).

Algorithm 2: ProjectNeighbors(p,Gp, Gq)
/* Collect qs and ds from neighbors */

1 neighbors← NearestNeighbors(pi, k,Gp);
2 qs← Empty configuration list;
3 ds← Empty distance list;
4 foreach j ∈ neighbors do
5 if qj is in Gq then
6 qs.append(qj);
7 ds.append(Dp(p, pj));

/* Compute weights */

8 ws← Weight list with the same size as qs;
9 foreach j ∈ neighbors do

10 wi ← (Max(ds)/di)
2

11 Normalize(ws);
/* Compute and project from qavg */

12 qavg ← WeightedAverage(qs, ws);
13 return Projection(p, qavg);

on the final result. A simple seeding strategy would be to
initialize Gq with a random configuration and expand from
there. Yet, this simple seeding method is prone to create
discontinuities in C-space. Fig. 6a illustrates an example with
the simple 3-link manipulator. Starting from an initial seed
q1 such that FK(q1) = p1, one set of generated configurations
are “elbow-down” configurations (blue), while the other set
is “elbow up” (purple). This results in a discontinuity at the
p6 task point, since no configuration (either purple or blue)
will satisfy the continuity constraint of both sides.

Ideally, the seeds should be situated within C-space to
minimize the probability of encountering discontinuities. To
this aim, we propose an alternative multi-seeding strategy,
as depicted in Fig. 6b. Given that the final roadmap must
encompass all potential cyclic paths, we propose to initialize
the roadmap with configurations from a continuous cyclic
path, shown as the green configurations in Fig. 6b. While
there exist algorithmic approaches to generating cyclic paths
[14], [15], we opted to manually create one per robot, since
only a single cyclic path is required for our purposes.
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D. Global Expansion
In this section, we describe how we can use the tools

mentioned in the previous sections to build the C-space
roadmap Gq = (Vq, Eq). We start by discretizing T -
space and generating the T -space roadmap Gp = (Vp, Ep).
Although several choices exist, in this paper we use grid
discretization. Given the selected initial configurations qsinit
and roadmap Gp, Alg. 3 describes, how we incrementally
expand the roadmap in C-space by projection from nearest
neighbors in a Breadth First Search (BFS) manner.

First, we initialize the C-space roadmap Gq , a queue Q, and
the visited set V with qsinit (line 1-line 3). Similar to BFS,
it iteratively dequeues an index i from Q and explores its k
nearest neighbors in the T -space (line 4-line 11). For each
point pi that does not have a corresponding configuration,
it uses Alg. 2 to project the weighted average configuration
and find the solution qi for the point pi (line 12). Finally,
it runs IsContinuous(Alg. 1) checks with all neighbors to
verify continuity, and the results will be used to update Gq

(line 13-line 14).

Algorithm 3: GlobalExpansion(Gp, qsinit)

/* Initialize */

1 Initialize C − space roadmap Gq with qsinit;
2 Q← A queue with each i ∈ qsinit;
3 V ← A set with each i ∈ qsinit;
4 while Q ̸= ∅ do

/* Expand in BFS order */

5 i← Q.dequeue();
6 foreach j ∈ NearestNeighbors(pi, k,Gp) do
7 if j /∈ V then
8 V.add(j);
9 Q.enqueue(j);

10 if qi is in Gq then
11 continue;

/* Project from neighbors */

12 qi ← ProjectNeighbors(pi, Gp, Gq);
/* Continuity check and update */

13 Run IsContinuous check with each neighbor;
14 Add qi and valid edges into Gq;

E. Utilizing The Roadmap
Now, we introduce some potential use cases for the com-

puted GRR roadmap.
1) IK Solver: To use the GRR map as an IK solver, we

need to generalize it to the continuous space for all p ∈ T . To
this aim, the process described in Alg. 2 can still be employed
to find the corresponding configuration q for any given point
p. However, the functionality of NearestNeighbor will
be different when discontinuous edges are present in the
local neighboring subgraph of Gq . The function should only
consider neighbors in the largest connected component of the
subgraph, ignoring any disconnected neighbors. Another way
to view this process is to use the GRR roadmap to get a good
qguess, and then use an off-the-shelf IK-solver to project it
to the given task-point constraint.

2) T -space Path Planning: To find a path from a starting
configuration to a goal configuration, we can directly plan
a path in the configuration roadmap Gq. However, if it is
desired to have the end-effector follow the edges of the T -
space roadmap Gp closely, we can instead search and plan
a path Pp in roadmap Gp. We then interpolate the points
along Pp and for each interpolated waypoint p, we can run
ProjectNeighbors to find its corresponding configuration
q and build the C-space path Pq. This ensures the end
effector will closely follow the edges of Gp. Also, since
the interpolation happens along the edges, the configuration
path Pq will always be feasible and continuous because the
edges have passed the IsContinuous check.

3) Teleoperation: Given a real-time Cartesian command
from a human operator, we can produce the corresponding
configuration as described in Sec. IV-E.1. However, since
the human input will not necessarily follow the edges of the
roadmap, the produced configuration q is not guaranteed to be
feasible. It can get into self-collision or a discontinuous region
if one exists. In this case, we can leverage the roadmaps and
run planning as in Sec. IV-E.2 to detour from these regions.

We design the teleoperation pipeline as follows. Given
the current configuration qc and a new human input pt as
the target, we compute the next configuration qt by running
ProjectNeighbors. We verify the feasibility of going from
qc to qt by testing it with IsContinuous. We execute it
if feasible. Otherwise, instead of going towards the human
input pt, we change the target from pt to pt’s valid nearest
neighbor pn in Gp. Such a change ensures the robot still
follows human commands closely without getting into an
infeasible zone. Once the human input pt becomes feasible
again, we leverage planning as described in Sec. IV-E.2 to
plan a path from qc to the new valid target qt and continue
tracking human input.

V. EXPERIMENTS

We evaluate the performance of our method in two aspects.
First, we assess the quality of the GRR roadmap relative to
the criteria set in Sec. III. Second, we emulated teleoperation
tasks and compared the results obtained from the GRR
roadmaps and different IK-solvers. All the experiments were
run on a machine with Intel i5-10400 and 16 GB memory.

A. Roadmap Quality Metrics

To measure the quality of the resolution roadmap Gq , two
metrics are used:

1) Roadmap Connectivity: A fully connected C-space
roadmap Gq may not exist or may be difficult to find,
resulting in a discontinuous graph. We quantify this concept
of connectivity with the metric:

C(Gq) =
NEq

NEp

(2)

where NEq
is the size of the C-space edge set Eq , and NEp

is
the size of the T -space edge set Ep. Thus, a fully connected
roadmap U(Gq) = 1 refers to a C-space roadmap that has as
many edges as the T -space roadmap.
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TABLE I: Roadmap Quality

Robot Dim(C) Dim(T ) Vertices Method Connectivity (%) Smoothness Building Time (min)

5-link Manipulator
Position 5 2 1,013 RANDOM-GRR 100.00 16.853 2.023

EXPANSION-GRR 100.00 5.675 0.095

5-link Manipulator
Position & Fixed Rotation 5 3 1,013 RANDOM-GRR 100.00 24.528 1.862

EXPANSION-GRR 100.00 8.992 0.150

Kinova
Position 7 3 3,299 RANDOM-GRR 100.00 9.223 22.971

EXPANSION-GRR 100.00 2.563 0.201

Kinova
Position & Fixed Rotation 7 6 3,299 RANDOM-GRR 100.00 11.205 72.013

EXPANSION-GRR 100.00 4.299 0.196

2) Roadmap Smoothness: Another metric that evaluates
the roadmap quality is the smoothness, approximated by the
averaged ratio of C-space edge distance to T -space edge
distance:

S(Gq) =
1

NEq

∑
(i,j)∈Eq

Dq(qi, qj)

Dp(pi, pj)
(3)

where NEq
is the size of the C-space edge set Eq . Dq and Dp

are functions to compute the distance in C-space and T -space.

B. Roadmap Quality Experiment

We compare the roadmap connectivity, smoothness, and
building time with the GRR method proposed in [2]. Instead of
using multi-seeding and projections, [2] builds the GRR map
by first randomly sampling numerous C-space configurations
at each T -space point. It then connects all the adjacent
pairs that pass the continuity test. Eventually, a constraint
satisfaction problem (CSP) solver is used to select a single
configuration for each point. We refer to this method as
RANDOM-GRR. In all experiments, we used 100 random
samples per T -space point.

We tested in simulation two robots, a 5-link planar ma-
nipulator (5-DOF), and a Kinova Gen3 arm (7-DOF) with
a Robotiq-85 gripper (shown in Fig. 1. The 5-link planar
manipulator joints are continuous (have no limits) and self-
intersections are allowed. The tested T -space for the planar
manipulator are T = R2 and T = SE(2), and the latter
incorporates a fixed rotation where the end-effector is always
facing right. The Kinova robot was tested with T = R3 and
T = SE(3), with the latter incorporating a fixed rotation
where the end-effector is consistently facing downwards.

The results are given in Table I. Both RANDOM-GRR and
EXPANSION-GRR can fully resolve the global redundancy.
However, EXPANSION-GRR outperforms RANDOM-GRR by
building a smoother roadmap up to 2 orders of magnitude
faster. We attribute the improved smoothness to the proposed
projections which minimize the distances between neigh-
boring configurations. Also, by utilizing multi-seeding and
projection, we can avoid the time-consuming steps caused by
extensive sampling in random-GRR.

C. Teleoperation Experiment

To evaluate the performance of our method in teleoperation,
we designed four geometric path tracing tasks, which provide
commands to robots in T -space:

• Random Line: A line defined by two random points.
• Self-crossing Line: A line as in Random Line, but it

passes through the robot’s base.
• Random Circle: A planar circle defined by a random

center point, up vector, and radius.
• Partially Reachable Circle: A planar circle as in Random

Circle, but part of it goes beyond the reachable space.

For each task, 100 paths are randomly generated. Inter-
mediate waypoints are sent sequentially to the solvers at 50
Hz over 4 seconds, i.e. 200 waypoints per path to follow,
simulating a human input action.

To use EXPANSION-GRR and RANDOM-GRR for teleop-
eration we use the teleoperation pipeline we proposed in
Sec. IV-E.3, and compare against Newton-Raphson IK and
Relaxed IK [9]. The weights of the Relaxed IK terms were
chosen to minimize deviation from input as suggested in [9].
We measure the following three metrics:

1) Deviation From Input: The deviation from the produced
path to the input path in T -space is measured by finding the
pairs of matched waypoints with dynamic time warping and
then computing the average distance between these pairs.

2) Path Smoothness: We define path smoothness similar
to roadmap smoothness, as the average distance ratio of the
produced C-space path to that of the produced T -space path.

3) Success Rate: The success is determined by whether
the produced T -space path follows the input path to the goal.
We marked it as a failure if the produced path gets stuck due
to local minima or self-collision.

For a fair comparison, we calculate deviation and smooth-
ness only for the problems that all methods succeed.

We ran the tasks with the Kinova arm in T = R3 with
fixed rotation and the aggregated results are summarized
in Table II. The IK solvers often got stuck in local minima
at line-related tasks and encountered singularities in circle-
related tasks. RANDOM-GRR had the lowest success rate, as it
tended to produce discontinuous paths from the non-smooth
map. The proposed method EXPANSION-GRR was able to
achieve 100% success rate in all types of tasks. Regarding
deviation from input, EXPANSION-GRR performed as well as
Newton-IK in tasks Random-Line and Random-Circle, but in
the more challenging tasks Self-Crossing Line and Partially
Reachable Circle, our method exhibited higher deviation due
to the need for more planning. For smoothness, the IK-solvers
achieved the best results for each T -space path. This result
is expected as our method prioritizes global consistency and
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continuity over smoothness. Nevertheless, EXPANSION-GRR
still produces smoother paths compared to RANDOM-GRR.

TABLE II: Teleoperation Experiment

Type Methods Deviation
From Input

Path
Smoothness

Success
Rate %

Random
Line

Newton IK 0.011 4.395 90
Relaxed IK 0.023 4.569 78

RANDOM-GRR 1.984 6.432 49
EXPANSION-GRR 0.011 5.071 100

Self-
crossing

Line

Newton IK 0.479 7.882 30
Relaxed IK 0.184 4.236 54

RANDOM-GRR 2.547 5.760 34
EXPANSION-GRR 0.461 5.481 100

Random
Circle

Newton IK 0.022 4.284 98
Relaxed IK 0.023 3.986 98

RANDOM-GRR 0.458 6.974 77
EXPANSION-GRR 0.022 4.664 100

Partially
Reach-

able
Circle

Newton IK 0.085 6.138 99
Relaxed IK 0.102 3.997 95

RANDOM-GRR 0.652 6.428 78
EXPANSION-GRR 0.166 5.200 100

VI. DISCUSSION

In this paper, we presented a new method to generate
smooth GRR roadmaps in an efficient manner. We also
demonstrated these properties compared to the prior art and
illustrated how they can be used for teleoperation tasks.

One of the limitations of our work is that it uses all of
the available redundancy of the robot to satisfy the T -space
constraints, making it challenging to meet other secondary
objectives. In the future we would like to address this problem
by building more flexible roadmaps similar to [8], [23].
The selection of initial seeds is another interesting problem
to investigate. One potential avenue is to generate cyclic
paths using [14], [15]. Although our method achieved full
connectivity in the tested examples, this might not always be
possible e.g., when obstacles are present. Nonetheless, we
expect the roadmap to still be usable as in the example with
the infeasible query of the self-crossing lines.

Finally, we would like to investigate applications of GRR
roadmaps beyond teleoperation such as motion planning,
dimensional reduction, and generating motion primitives.
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