
ActivePusher: Active Learning and Planning
with Residual Physics for Nonprehensile Manipulation

Zhuoyun Zhong Seyedali Golestaneh Constantinos Chamzas
Department of Robotics Engineering, Worcester Polytechnic Institute

{zzhong3, sgolestaneh, cchamzas}@wpi.edu

Active Learning Active Planning

Which skill parameters 

to use? 

I want to push to 

the edge to grasp 

I want to improve 

my pushing skills

Which skill parameters 

to practice? 

Figure 1: Two key challenges addressed by ACTIVEPUSHER. When learning, the robot must choose the most
informative (active learning) skill parameters to efficiently improve its skills. When planning, the robot should
select skill parameters with low model uncertainty (active planning) to ensure reliable task completion.

Abstract: Planning with learned dynamics models offers a promising approach to-
ward real-world, long-horizon manipulation, particularly in nonprehensile settings
such as pushing or rolling, where accurate analytical models are difficult to obtain.
However, collecting training data for learning-based methods can be costly and in-
efficient, as it often relies on randomly sampled interactions that are not necessarily
the most informative. Furthermore, learned models tend to exhibit high uncertainty
in underexplored regions of the skill space, undermining the planning reliability.
To address these challenges, we propose ACTIVEPUSHER, a novel framework that
combines residual-physics modeling with kernel-based uncertainty-driven active
learning to focus data acquisition on the most informative skill parameters. Addi-
tionally, ACTIVEPUSHER seamlessly integrates with model-based kinodynamic
planners, leveraging uncertainty estimates to bias control sampling toward more
reliable actions. We evaluate our approach in both simulation and real-world envi-
ronments and demonstrate that it improves data efficiency and planning success
rates compared to baseline methods.

Keywords: Active Learning, Nonprehensile Manipulation, Kinodynamic Planning

1 Introduction

Model-based planning methods offer a powerful framework for generalizing robotic behavior across
tasks and enabling long-horizon decision making [1, 2]. However, their effectiveness critically
depends on the accuracy of the underlying forward dynamics model. Inaccuracies in this model can
cause cascading errors during execution, particularly in contact-rich settings such as nonprehensile
manipulation (e.g., pushing, sliding, or rolling), where even minor deviations in predicted trajectories
may lead to significant task failure.

Accurately modeling the dynamics for these tasks is challenging. Analytical physics-based models
often rely on simplified assumptions about friction, contact geometry, and mass distribution, making



them brittle in practice [3]. As an alternative, data-driven approaches can learn dynamics directly
from interaction data, either from scratch or by refining simplified analytical models through residual
learning [4, 5]. However, these methods face two key limitations in real-world robotic settings:

• Sample inefficiency: Learning accurate models often requires large amounts of interaction
data, which is costly and time-consuming to collect on physical systems.

• Inaccuracy in underexplored regions: Models may perform poorly in sparsely explored
regions of the skill space, leading to unreliable predictions and failures during execution.

In this paper, we propose ACTIVEPUSHER, a framework that tightly integrates residual physics, active
learning, and active kinodynamic planning, to address both challenges visually illustrated in Fig. 1.
The core insight of our approach is to explicitly quantify epistemic uncertainty in a learned neural
network model with residual physics. This uncertainty estimate allows the system to actively target
informative skills for learning and reliable skills for planning.

To estimate the epistemic uncertainty of a learned neural network model, we adopt the Neural Tangent
Kernel (NTK) [6]. During learning, rather than sampling pushing actions at random, ACTIVEPUSHER
actively queries the NTK for uncertainty estimation and identify actions with the highest expected
information gain using Batch Active learning via Information maTrices (BAIT) strategy [7]. This
targeted exploration enables the model to improve rapidly with far fewer interactions. During planning,
the uncertainty estimates are incorporated into a kinodynamic planner, biasing control selection
toward high-confidence actions to maximize task success. By focusing on where the model is
uncertain to learn, and where the model is certain to act, our approach tightly integrates learning
and planning, enabling robust nonprehensile manipulation with few real-world interactions per task.
Crucially, ACTIVEPUSHER operates without large offline datasets, high-fidelity simulation, or human
demonstrations. Our main contributions are as follows:

• Active learning of skill models. We introduce a principled framework for data-efficient
nonprehensile skill learning by selecting skill parameters that maximize expected information
gain, enabling data collection in the most informative manner.

• Active uncertainty-aware planning. We propose a novel planning strategy that integrates
model uncertainty into an asymptotically optimal kinodynamic planner, guiding action
sampling toward reliable actions and improving overall task success rate.

• Empirical validation in simulation and the real world. We demonstrate the effectiveness
of our approach with multiple objects and a manipulation task, showing improved data
efficiency and planning success over baselines.

2 Related Work

ACTIVEPUSHER draws ideas from several areas, such as residual learning, active learning and
kinodynamic planning. In this section, we briefly review each of these areas in the context of
nonprehensile manipulation, with a focus on pushing.

Residual Model Learning aims to combine the strengths of analytical and data-driven approaches by
training a neural network to predict corrections on top of an approximate physics-based model. This
strategy increases predictive accuracy while leveraging the structure and inductive biases provided
by analytical models. In robotic manipulation, purely analytical models and physics simulations
can offer useful priors but are often coarse approximations of real-world dynamics, sensitive to
assumptions about physical parameters [8]. Conversely, fully data-driven methods [9] can model
complex behaviors without priors but typically require large amounts of real-world data. By learning
only the residual error between a physics model and reality, residual learning approaches significantly
reduce the data burden while improving real-world performance. Our work builds on residual learning
approaches [4, 5]. In addition, ACTIVEPUSHER advances beyond prior work by actively selecting the
most informative data points for model refinement, further improving sample efficiency.

2



Active Learning is a well-established topic in machine learning that aims to improve sample efficiency
by actively selecting which data points to label [7, 10, 11, 12]. This paradigm naturally aligns with
self-supervised robotic learning settings, where the robot can autonomously choose which experiences
to collect. Given the high cost of real-world data acquisition, several robotic learning approaches have
leveraged active learning to reduce the number of required interactions [13]. In the context of skill
learning, recent methods [14, 15] have applied active learning strategies to accelerate the acquisition
of binary success/failure skills, such as pouring [16] or scooping. However, existing approaches
primarily focus on optimizing task success rates rather than predicting the detailed outcomes of
actions. In contrast, our work applies active learning to improve predictive skill models, enabling
more accurate outcome predictions and their integration into kinodynamic planners.

Kinodynamic Non-Prehensile Planning is a class of motion planning methods for non-prehensile
tasks. Prior works use fixed physics-based models and primarily emphasize computational effi-
ciency [17, 18]. The authors of [19] adapt to uncertainty online, while visual-dynamics meth-
ods [20, 21, 22] learned visual forward dynamics, but require extensive data collection. More closely
related to our approach are methods such as [8, 23, 24], which learn dynamics models using GP
and integrate them within a model predictive control (MPC) framework. Although these methods
combine learned models with model-based planners, they rely on random data collection and do not
reason about learned model uncertainty.

3 Problem Statement

Kinodynamic Planning: Let x ∈ X denote the state and state-space, and u ∈ U denote the control
and control-space of a robotic system [1]. The true (unknown) system dynamics can be expressed as:

x(T ) = x(0) +

∫ T

0

f(x(t), u(t)) dt

where T denotes the trajectory duration, and f the unknown forward dynamics model of the system.
Let Xobs ⊂ X denote the obstacle (invalid) state space, and Xfree = X \ Xobs denote the free (valid)
space. The start state is xstart ∈ Xfree, and the goal region is Xgoal ⊆ Xfree.

The kinodynamic planning problem is to determine a time T and a control function u : [0, T ]→ U
such that the resulting trajectory satisfies x(0) = xstart, x(T ) ∈ Xgoal, and x(t) ∈ Xfree for all
t ∈ [0, T ].

Active Learning of Forward Dynamics Models: We define an interaction as the application of a
sequence of controls (u1, u2, u3, . . . ), with the corresponding observed states (x1, x2, x3, . . . ). The
sequence of applied controls and observed states forms a dataset for model learning.

The active learning of forward dynamics models problem is to approximate the unknown f with a
learned model f̂ , such that f̂ predicts the outcomes of applied controls as accurately as possible, while
minimizing the number of interactions required for training with the help of uncertainty quantification.

Active Kinodynamic Planning: Borrowing the concept of active learning with uncertainty quan-
tification, we define active kinodynamic planning as incorporating uncertainty estimation from the
learned dynamics model in kinodynamic planning. The problem aims at finding a control trajectory
u(·) such that the resulting trajectory x(·) satisfies the planning requirements with high probability.

4 Methodology

We represent each object as a 2D oriented bounding box (OBB) and parameterize a 2D push by three
variables (s, o, d), shown in Fig. 2, where s ∈ {1, . . . , 4} selects one of the box’s sides, o is the lateral
offset along that side from the center, and d is the total push distance. The end-effector follows a
straight-line fixed-duration (T = 3 s) sinusoidal velocity profile:

v(t) =
d

T

[
sin
(
2π

t

T
− π

2

)
+ 1
]

3



The effect of the push is defined as the SE(2) transform between the object’s initial and final poses.
In this work, we adopt the isotropic assumption, treating the push effect as invariant to the object’s
initial state by modeling it in an object-centric frame.

4.1 Residual Physics

o

OBB

d

s

Push 

Parameters

Object

Pose

Physics 

Estimation

NN

Figure 2: Neural network (NN) with residual physics architecture.
The network takes both the control parameters and the output of
the physics model to predict residuals, which are then added to the
physics-based output to produce the final prediction.

To effectively predict in a low-data set-
ting, we adopt the approach of learn-
ing residual physics, which integrates
a physics-based model with a neural
network [4, 5]. Rather than replacing
the physics-based model, the neural
network is tasked with learning the
residual error, i.e. deviations from the
idealized model output to the real ob-
servations. This preserves the phys-
ical plausibility while allowing the
learned component to correct and im-
prove overall accuracy.

For the analytical model, we follow the motion model proposed in [25] to predict object motion
given pusher motion. In this framework, the object is treated as a rigid rectangle pushed under
quasi-static assumption, with frictional forces obeying Coulomb’s law. The model further requires
knowledge of the object’s shape and the ratio of frictional moment to frictional force. However, we
do not assume having access to these exact parameters. Thus, the analytic prediction serves only as a
coarse estimation on how the object will move. To keep the model compatible with our data-driven
components, we apply additional simplification, details of which are provided in Appendix Sec. B.1.

As illustrated in Fig. 2, our neural network takes both the skill parameters and the output of the physics
equation as input. This design enables the network to reason about both the nominal dynamics and
the data-driven corrections required to account for object-specific and contact-specific variations. The
network finally outputs the residual, and the model combines it with the physics equation output to
provide the final estimate. We train the combined model by minimizing the SE(2) Mean Squared
Error (MSE):

LSE(2) =
∥∥∥log (T̂−1T

)∥∥∥2
where T̂ , T ∈ SE(2) are the predicted and true poses. The logarithmic map log(·) maps the relative
transform T̂−1T to its Lie algebra se(2) and gives a 3D vector of errors in the Lie tangent space.

4.2 Uncertainty Quantification

Traditionally, neural network-based dynamics models produce only point estimates of action outcomes,
lacking measure of their prediction uncertainty. By explicitly quantifying the epistemic uncertainty
in the learned model, ACTIVEPUSHER enables both uncertainty-aware data acquisition and robust
planning, as illustrated in Fig. 3. During learning, this uncertainty guides active data collection by
prioritizing the most informative samples, thereby improving data efficiency (Sec. 4.3). At execution
time, the planner leverages this uncertainty to select reliable actions from well-explored regions of
the action space, resulting in more robust planning (Sec. 4.4).

ACTIVEPUSHER estimates model uncertainty by recasting a trained neural network as a Gaussian
Process (GP) via its Neural Tangent Kernel (NTK) [6]. In the infinite-width limit setting, a fully-
connected network trained by gradient descent evolves as a Gaussian Process with fixed covariance
given by the NTK, defined as

kNTK(x, x
′) =

〈
∇θfθ(x), ∇θfθ(x

′)
〉

where fθ(x) denotes the network output given input x and ∇θfθ(x) is its gradient with respect to
model’s parameters. Empirically, for finite-width networks, the kernel changes during the training

4



process. But NTK with parameters after convergence (also known as empirical NTK) still yields
accurate posterior uncertainty estimates in practice [6, 12, 26].

The gradient of the neural network ∇θfθ(x) reflects how sensitive the network’s output fθ(x) is to
small perturbations in parameter θ. Intuitively, if the gradients at two input points x and x′ are similar,
these inputs contain comparable information from the perspective of the neural network.

Leveraging NTK as a prior covariance function allows for explicit posterior inference of unobserved
data points within the data pool Spool, conditioned on observed training data Strain. Formally, given
a pre-defined data noise σd, the posterior can be represented as in Eq. 1.

Cov(Spool) = KNTK(Spool,Spool)−KNTK(Spool,Strain)K
−1
t KNTK(Strain,Spool)

Kt = KNTK(Strain,Strain) + σ2
dI

(1)

where KNTK(A,B) is the Gram matrix of pariwise NTK values between inputs in A and B.

ReliableInformative

U
n
ce

rt
ai

n
ty

a) Estimated Model Uncertainty

Skill

Parameters

b) Active Learning c) Active Planning 

Uninformative

Informative

Reliable

Unreliable

Figure 3: a) ACTIVEPUSHER quantifies the model un-
certainty of the learned model (Sec. 4.2). b) During
the learning phase, ACTIVEPUSHER chooses the most
informative push to apply to increase the learning ef-
ficiency (Sec. 4.3). c) During planning the most reli-
able pushes are chosen to maximize the task success
rate (Sec. 4.4).

In practice, we employ additional kernel trans-
formations for computational efficiency and nu-
merical stability. Specifically, a sketching kernel
is applied to reduce the dimensionality of kernel
matrices, and a scaling kernel is utilized for label
normalization. Detailed discussions and imple-
mentations of these kernel transformations can
be found in [12].

4.3 Active Learning

Given the posterior estimation, one can apply dif-
ferent acquisition strategies to select next batch
of data. The general active learning process is de-
fined in Alg. 1. In each of the N training round,
we perform uncertainty estimation over all unla-
beled data in Spool and select the B most infor-
mative samples Ssel. After quering their labels
and moving them into the training set Strain, we
retrain the model with the expanded Strain and
proceed to the next round.

In this work, we adopt the BAIT algorithm [7]
to actively select the most informative pushing
parameter batch to execute during training. Intu-
itively, BAIT aims to select k points whose com-
bined per-sample Fisher embeddings best ap-
proximate (in Frobenius norm) the global Fisher
information, yielding a representative batch that
jointly captures both model uncertainty and di-
versity. In regression problems with squared-
error, BAIT is simplified to reduce the total pos-
terior variance over the training and pool set after sample selection. Equivalently, in the kernel setting,
BAIT acquisition function is given by:

Ssel = AcquireBAIT(k,Strain,Spool, B) =

argmin
Ssel⊆Spool

∑
x∈Strain∪Spool

kNTK[Strain ∪ Ssel](x, x) (2)

where kNTK[S] denotes the posterior after being conditioned on S. However, as discussed in [7],
optimizing the Fisher objective Eq. 2 is intractable given the many potential different combinations
for Ssel. To avoid this, BAIT employs a forward–backward greedy approximation to select a batch
that closely approximates the solution. Details of the algorithm are provided in Appendix Sec. A.2.

5



Algorithm 1: Active Learning

Input: Kernel k, training round N , batch size B, initial training set Strain, pool set Spool
1 for i← 1 to N do
2 Ssel ← Acquire(k,Strain,Spool, B);
3 Strain ← Strain ∪ Ssel;
4 Spool ← Spool \ Ssel;
5 Acquire labels of Ssel;
6 Train model with Strain and corresponding labels;

Algorithm 2: Active Action Sampling

Input: Kernel k, training set Strain
1 SU ← random sampling();
2 Var← Diag(query uncertainty(k,Strain,SU )) (Eq. 1);
3 return argminu∈SU

Var[u];

4.4 Active Planning

Different from traditional trajectory tracking or closed-loop MPC approaches for pushing [8, 23, 24],
we formulate nonprehensile pushing as a kinodynamic planning problem in the object’s SE(2) state
space. In this formulation, each parameterized push action becomes a discrete control that drives
the object’s pose. We use an asymptotically optimal kinodynamic planner, specifically SST [27], to
explore the object’s state space directly.

In the absence of model error, action sequences found by SST succeed by design; in practice, however,
accumulated prediction errors can lead to execution failures. To improve robustness, we integrate
epistemic uncertainty estimates into the action sampling step. Specifically, we use the method in
Sec. 4.2 to provide uncertainty estimate on the potential pushing actions. This can bias action sampling
away from uncertain regions of the skill space. At each planning step, we sample a batch of candidate
pushing actions, query the model to evaluate their epistemic uncertainty, and select the action with
the lowest predicted uncertainty. Alg. 2 summarizes our uncertainty-aware sampling procedure. By
biasing exploration toward well-explored regions of the skill space, SST remains asymptotically
optimal while avoiding poorly modeled dynamics.

5 Experiments

To evaluate the effectiveness of ACTIVEPUSHER, we design a nonprehensile manipulation scenario,
as shown in Fig. 1. The same setup is replicated in the genesis [28] simulation, which enables parallel
data collection for accelerated training. In both simulation and real-world experiments, we use a
6-DOF UR10 robotic arm equipped with a rigidly grasped cylinder tool to execute nonprehensile
pushing actions. Our experiments focus on the task of pushing different objects, drawn from the
YCB object dataset [29]. The selected objects vary in shape, mass, and frictional properties to test the
robustness of our approach across a range of physical characteristics. To execute the push parameters
in the robot, we use a global redundancy resolution method [30].

We evaluate the proposed method in two settings: (i) skill learning performance, which measures
prediction accuracy (Sec. 5.1), and (ii) long-horizon kinodynamic planning, where we assess the task
success effectiveness of uncertainty-guided planning (Sec. 5.2).

5.1 Skill Learning

As described in Sec. 4.3, training our active learning method requires a pool of candidate samples for
labeling. We randomly selected 1,000 push parameters to serve as the candidate set, denoted by Spool.
At each data acquisition stage, we collect a batch of 20 samples Ssel and repeat this process for a
total of 10 batches. We repeat the whole experiment five times in simulation and three times in the
real world. Four objects in simulation and one object in the real world are used, and we evaluate the
following five methods:

6



Real Cracker Box

Number of Batches

S
E

2 
P

os
e 

E
rr

or
 (

R
M

S
E

)

Sim Cracker Box Sim Mug Sim Mustard Bottle Sim Banana

Residual Active Learning (Ours)MLP Active Learning (Ours)Residual RandomMLP RandomPure Physics

Number of Batches Number of Batches Number of Batches Number of Batches

Figure 4: Push-Skill Learning Results. The validation Loss for 1 real object, and 4 simulated objects in from the
YCB Dataset: Cracker Box, Mug, Mustard Bottle Banana. The proposed active learning methods outperform
random data collection for all objects. Models with residual physics performs better in low-data regime.

• Pure Physics: The analytical dynamics model described in Sec. 4.1.

• MLP Random: A fully connected neural network trained on random push parameters.

• Residual Random: The hybrid model as described in Sec. 4.1. The physics estimation is the
same as Pure Physics. Meanwhile, the neural network architecture and data collection are
the same as MLP Random.

• MLP Active Learning: The same MLP architecture as MLP Random, but trained via our
NTK-driven active learning pipeline to select informative samples.

• Residual Active Learning: The hybrid residual model, trained using our active learning
framework to assess the combined impact of residual physics and informed sample selection.

The summarized results for Root Mean Square Error (RMSE) loss on the validation set (1,000 data),
shown in Fig. 4, demonstrate that modesl with residual physics features clear improvement when
having a limited number of data. Also, active learning approach outperforms the random method for
all objects. Therefore, our experiment shows that leveraging active learning and informing the model
with the physics of the task would be beneficial in scenarios where data acquisition is challenging.

5.2 Kinodynamic Planning

In this experiment we demonstrate the performance of a learned model in tandem with a kinodynamic
planner for a downstream task. The planning was conducted in the object’s state space, defined as
X = SE(2), with a control space U = R3 corresponding to the pushing parameters described in
Sec. 4. The valid state space Xfree is constrained to the table surface, and the robot base is treated as
an obstacle that the object should not be pushed into.

We designed a Push-to-Grasp Task in which the robot must push a wide, non-graspable box toward
the edge of the table to enable a feasible pick-up, as shown on the right side of Fig. 1. The goal region
Xgoal is defined via a geometry proxy: any object pose for which the center of the mass of the box
is inside the table and at least one corner lies beyond a certain distance from the table boundary is
treated as graspable and serves as a valid goal state.

We use SST[27], an asymptotically optimal kinodynamic planner, in the Open Motion Planning
Library OMPL [31] to solve a set of 100 planning problems with varied start and goal configurations.
A key advantage of asymptotic optimality is that it enables us to use path length as optimization
objective, implicitly minimizing the number of control steps and reducing cumulative model error
during execution. The produced sequence of controls are executed in open-loop.

Active Learning for Push-to-Grasp Task: We first evaluate the performance of the learned skill
models, trained with different active learning strategies described in the previous section Sec. 5.1,
in simulation. The original kinodynamic planner is used in this experiment. The whole experiment

7



Residual Active Learning (Ours)MLP Active Learning (Ours)Residual Random

Number of Batches Number of Batches

MLP Random

T
ra

ck
in

g 
E

rr
or

 (
R

M
S

E
)

S
uc

ce
ss

 R
at

e 
(%

)

Figure 5: Planning results for Push-to-Grasp Task in simulation, showing success rate over 100 different plans
and the corresponding tracking error between planned and executed trajectories.

Residual Active Learning & Random Planning

Number of Batches

Simulation Real-World

Residual Active Learning & Active Planning (Ours)

Number of Batches Number of Batches Number of Batches

T
ra

ck
in

g 
E

rr
or

 (
R

M
S

E
)

T
ra

ck
in

g 
E

rr
or

 (
R

M
S

E
)

S
uc

ce
ss

 R
at

e 
(%

)

S
uc

ce
ss

 R
at

e 
(%

)

Figure 6: Results comparison of Active Planning and Random Planning in both simulation and real-world for
Push-to-Grasp Task.

is repeated five times and we measure task success rate and trajectory tracking error in the SE(2)
space, which are reported in Fig. 5.

Overall, the results are consistent with those of Sec. 5.1. In the low-data regime, models with
residual physics consistently outperform those without, and incorporating active learning accelerates
improvement in task success rate and reduction in tracking error.

Active Planning for Push-to-Grasp Task: We test the proposed active planning method, as described
in Sec. 4.4, with the best trained model Residual Active Learning, both in simulation and in the real
world. In simulation, we run the 100 planning problems with all ten models with different training
data sizes. The whole experiment is repeated three times. For real-world models, we test five models
at batches 2, 4, 6, 8, and 10, and the whole experiment is only run once. The results are presented
in Fig. 6.

In both simulation and the real world, tracking error results show that the active action sampling algo-
rithm would choose actions that models are more confident with, thus resulting in a lower execution
error in push paths in general. Consequently, our active planning method is able to outperform the
random method in terms of the success rate consistently.

6 Conclusion

In this paper, we present ACTIVEPUSHER, a framework that combines residual physics, active
learning, and uncertainty-aware active kinodynamic planning to improve learning and planning of
nonprehensile manipulation. By explicitly modeling epistemic uncertainty using NTK, our method
selectively gathers informative training data with BAIT acquisition function, and biases kinodynamic
planning toward reliable actions. Experimental results in both simulation and real-world pushing tasks
demonstrate that ACTIVEPUSHER achieves higher prediction accuracy and planning success with
fewer interactions compared to baseline approaches. This integration of learning and planning offers
a promising path toward data-efficient and reliable robotic manipulation in nonprehensile setting.

8



7 Limitation

One limitation of our framework ACTIVEPUSHER is that we model only epistemic uncertainty
through NTK-based posterior, and do not account for inherent aleatoric uncertainty. In many pushing
scenarios, different actions exhibit inherently different noise characteristics. For instance, pushing
a toy car forward may produce more variability than nudging it laterally, yet our planner treats all
residual noise as if it were learnable. Without an aleatoric term, the system may avoid regions with
high model uncertainty that are in fact low–noise in practice, or conversely over-commit to pushes
with low model uncertainty that are intrinsically stochastic.

A second limitation is on task and object diversity. Although we evaluate across a variety of YCB
objects with different shapes and mass, our study remains confined to planar pushes in SE(2). Future
work could explore a broader array of geometries (e.g. non-convex or articulated objects), dynamics
(e.g. uneven mass distribution or surface), or extend the framework to full 3D (SE(3)) pushing and
other non-prehensile skills such as rolling and throwing.

A third limitation is that ACTIVEPUSHER operates in an open-loop fashion. During execution, we
sample a fixed sequence of pushes without real-time feedback and replanning. In practice, closed-loop
control and online replanning can substantially increase robustness to unmodeled disturbances or
sensor noise.

9



References
[1] A. Orthey, C. Chamzas, and L. E. Kavraki. Sampling-based motion planning: A comparative

review. Annual Review of Control, Robotics, and Autonomous Systems, 7(1):285–310, July 2024.
URL https://doi.org/10.1146/annurev-control-061623-094742.

[2] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and
T. Lozano-Pérez. Integrated task and motion planning. Annual Review of Con-
trol, Robotics, and Autonomous Systems, 4(Volume 4, 2021):265–293:, 2021. ISSN
2573-5144. URL https://www.annualreviews.org/content/journals/10.1146/

annurev-control-091420-084139.

[3] M. T. Mason. Toward robotic manipulation. Annual Review of Control,
Robotics, and Autonomous Systems, 1(Volume 1, 2018):1–28, 2018. ISSN 2573-
5144. URL https://www.annualreviews.org/content/journals/10.1146/

annurev-control-060117-104848.

[4] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser. Tossingbot: Learning to throw
arbitrary objects with residual physics. IEEE Transactions on Robotics, 36(4):1307–1319, 2020.
URL https://ieeexplore.ieee.org/document/9104757.

[5] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum, and A. Rodriguez. Aug-
menting physical simulators with stochastic neural networks: Case study of planar pushing and
bouncing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3066–3073, 2018. URL https://ieeexplore.ieee.org/document/8593995.

[6] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/

2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

[7] J. Ash, S. Goel, A. Krishnamurthy, and S. Kakade. Gone fishing: Neural active learning with
fisher embeddings. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 8927–8939.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/

paper/2021/file/4afe044911ed2c247005912512ace23b-Paper.pdf.

[8] F. R. Hogan and A. Rodriguez. Reactive planar non-prehensile manipulation with hybrid
model predictive control. The International Journal of Robotics Research, 39(7):755–773, 2020.
doi:10.1177/0278364920913938. URL https://doi.org/10.1177/0278364920913938.

[9] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/

2016/file/c203d8a151612acf12457e4d67635a95-Paper.pdf.

[10] Y. Gal, R. Islam, and Z. Ghahramani. Deep Bayesian active learning with image data. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 1183–1192. PMLR,
06–11 Aug 2017. URL https://proceedings.mlr.press/v70/gal17a.html.

[11] X. Li and Y. Guo. Adaptive active learning for image classification. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages 859–866, 2013. doi:10.1109/CVPR.2013.116.

[12] D. Holzmüller, V. Zaverkin, J. Kästner, and I. Steinwart. A framework and benchmark for deep
batch active learning for regression. J. Mach. Learn. Res., 24(1), Jan. 2023. ISSN 1532-4435.
URL https://dl.acm.org/doi/abs/10.5555/3648699.3648863.

10

https://doi.org/10.1146/annurev-control-061623-094742
https://www.annualreviews.org/content/journals/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/content/journals/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/content/journals/10.1146/annurev-control-060117-104848
https://www.annualreviews.org/content/journals/10.1146/annurev-control-060117-104848
https://ieeexplore.ieee.org/document/9104757
https://ieeexplore.ieee.org/document/8593995
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4afe044911ed2c247005912512ace23b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4afe044911ed2c247005912512ace23b-Paper.pdf
http://dx.doi.org/10.1177/0278364920913938
https://doi.org/10.1177/0278364920913938
https://proceedings.neurips.cc/paper_files/paper/2016/file/c203d8a151612acf12457e4d67635a95-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c203d8a151612acf12457e4d67635a95-Paper.pdf
https://proceedings.mlr.press/v70/gal17a.html
http://dx.doi.org/10.1109/CVPR.2013.116
https://dl.acm.org/doi/abs/10.5555/3648699.3648863


[13] A. T. Taylor, T. A. Berrueta, and T. D. Murphey. Active learning in robotics: A review of
control principles. Mechatronics, 77:102576, 2021. ISSN 0957-4158. URL https://www.

sciencedirect.com/science/article/pii/S0957415821000659.

[14] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez. Learning compositional models
of robot skills for task and motion planning. The International Journal of Robotics Research,
40(6-7):866–894, 2021. URL https://doi.org/10.1177/02783649211004615.

[15] A. LaGrassa, M. Lee, and O. Kroemer. Task-oriented active learning of model preconditions
for inaccurate dynamics models. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 16445–16445. IEEE, 2024.

[16] N. Kumar, T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-Pérez, L. P. Kaelbling, and
J. Barry. Practice makes perfect: Planning to learn skill parameter policies. arXiv preprint
arXiv:2402.15025, 2024.

[17] J. A. Haustein, I. Arnekvist, J. Stork, K. Hang, and D. Kragic. Learning manipulation states and
actions for efficient non-prehensile rearrangement planning. arXiv preprint arXiv:1901.03557,
2019.

[18] K. Ren, P. Chanrungmaneekul, L. E. Kavraki, and K. Hang. Kinodynamic rapidly-exploring
random forest for rearrangement-based nonprehensile manipulation. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 8127–8133. IEEE, 2023.

[19] M. Faroni and D. Berenson. Online adaptation of sampling-based motion planning with
inaccurate models. In 2024 IEEE International Conference on Robotics and Automation (ICRA),
pages 2382–2388. IEEE, 2024.

[20] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 2786–2793. IEEE, 2017.

[21] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally linear
latent dynamics model for control from raw images. Advances in neural information processing
systems, 28, 2015.

[22] W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held. Hacman: Learning hybrid actor-critic maps
for 6d non-prehensile manipulation. In Conference on Robot Learning, pages 241–265. PMLR,
2023.

[23] M. Bauza, F. R. Hogan, and A. Rodriguez. A data-efficient approach to precise and controlled
pushing. In Conference on Robot Learning, pages 336–345. PMLR, 2018.

[24] G. Wang, K. Ren, and K. Hang. Uno push: Unified nonprehensile object pushing via non-
parametric estimation and model predictive control. In 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 9893–9900. IEEE, 2024.

[25] K. Lynch, H. Maekawa, and K. Tanie. Manipulation and active sensing by pushing using tactile
feedback. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 1, pages 416–421, 1992. doi:10.1109/IROS.1992.587370.

[26] M. A. Mohamadi, W. Bae, and D. J. Sutherland. Making look-ahead active learning strategies
feasible with neural tangent kernels. Advances in Neural Information Processing Systems, 35:
12542–12553, 2022.

[27] Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically optimal sampling-based kinodynamic
planning. The International Journal of Robotics Research, 35(5):528–564, 2016. doi:10.1177/
0278364915614386. URL https://doi.org/10.1177/0278364915614386.

[28] G. Authors. Genesis: A universal and generative physics engine for robotics and beyond.
December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis.

11

https://www.sciencedirect.com/science/article/pii/S0957415821000659
https://www.sciencedirect.com/science/article/pii/S0957415821000659
https://doi.org/10.1177/02783649211004615
http://dx.doi.org/10.1109/IROS.1992.587370
http://dx.doi.org/10.1177/0278364915614386
http://dx.doi.org/10.1177/0278364915614386
https://doi.org/10.1177/0278364915614386
https://github.com/Genesis-Embodied-AI/Genesis


[29] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar. Benchmarking
in manipulation research: Using the yale-cmu-berkeley object and model set. IEEE Robotics
Automation Magazine, 22(3):36–52, 2015. doi:10.1109/MRA.2015.2448951.

[30] Z. Zhong, Z. Li, and C. Chamzas. Expansion-grr: Efficient generation of smooth global
redundancy resolution roadmaps. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 8854–8860, 2024. doi:10.1109/IROS58592.2024.10801917.

[31] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72–82, December 2012. doi:10.1109/MRA.2012.2205651.
https://ompl.kavrakilab.org.

[32] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023. URL https://arxiv.org/pdf/2303.05499.

[33] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick. Segment anything. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages 4015–4026,
October 2023. URL https://openaccess.thecvf.com/content/ICCV2023/papers/

Kirillov_Segment_Anything_ICCV_2023_paper.pdf.

12

http://dx.doi.org/10.1109/MRA.2015.2448951
http://dx.doi.org/10.1109/IROS58592.2024.10801917
http://dx.doi.org/10.1109/MRA.2012.2205651
https://ompl.kavrakilab.org
https://arxiv.org/pdf/2303.05499
https://openaccess.thecvf.com/content/ICCV2023/papers/Kirillov_Segment_Anything_ICCV_2023_paper.pdf
https://openaccess.thecvf.com/content/ICCV2023/papers/Kirillov_Segment_Anything_ICCV_2023_paper.pdf


Appendix

A Active Learning Algorithms

In this section, we provide a more detailed and formal explanation of the active learning strategy used
in ACTIVEPUSHER. The core idea is to leverage the Neural Tangent Kernel (NTK) [6] for posterior
estimation and the Batch Active learning via Information maTrices (BAIT) [7] acquisition strategy.

A.1 Posterior Estimation

Given a fully-connected neural network fθ(x) with infinite width, parameterized by weights θ, trained
with dataset samples Strain and corresponding labels Ltrain, its NTK is defined as

kNTK(x, x
′) =

〈
∇θfθ(x), ∇θfθ(x

′)
〉

where ∇θfθ(x) denotes the gradient of the network output with respect to the parameters θ, x and x′

are two different input samples, and
〈
·, ·
〉

is the inner product of two parameter gradient vectors.

After training to convergence under the infinite-width regime, the neural network fθ(x) becomes
equivalent to a Gaussian Process(GP) governed by the NTK:

fθ(x) ∼ GP
(
0, kNTK(x, x

′)).

Conditioned on the labeled training dataset Strain, we obtain the posterior kernel kNTK[Strain]. The
posterior allows us to estimate predictive uncertainty over a given unlabeled pool set Spool:

Cov(Spool) = kNTK(Spool,Spool)− kNTK(Spool,Strain) kNTK(Strain,Strain + σ2I)−1 kNTK(Strain,Spool)

where kNTK abbreviates kNTK[Strain] for simplicity, and σ is the assumed inherent data noise (we
set σ = 0.01 in our experiments). By isolating the diagonal terms of the posterior covariance matrix,
we obtain per-sample epistemic uncertainty estimates for Spool:

Var(Spool) = Diag(Cov(Spool))

Although real networks are of finite width, this empirical NTK approximation still provides a practical
estimate of the model’s uncertainty. Since the aleatoric uncertainty is captured by pre-defined σd, the
posterior covariance primarily reflects the epistemic uncertainty of the model. These estimates on the
unseen data Spool will be used for both active skill learning and active skill planning.

A.2 BAIT

Given posterior estimation, we adopt BAIT acquisition strategy to choose informative samples [7].
BAIT builds upon a theoretically principled criterion from statistics: minimizing the expected error
(or Bayes risk) of a maximum likelihood estimator by maximizing the Fisher information accumulated
through labeling selected data points. Specifically, BAIT seeks to minimize the trace of the inverse
Fisher information matrix of the selected batch (i.e., the model uncertainty after selecting a batch),
pre-multiplied by the Fisher information of the entire unlabeled pool:

argmin
Ssel⊆Spool

tr

(∑
x∈Ssel

I(x; θ)

)−1
 ∑

x∈Spool

I(x; θ)

 (3)

To reduce the necessary computation, BAIT chose to operate only on the last layer of the network.
For regression, this can be further simplified with Kronecker product to:

argmin
Ssel⊆Spool

c · tr

(∑
x∈Ssel

xL(xL)⊤

)−1
 ∑

x∈Spool

xL(xL)⊤


where Let (xL) is the penultimate layer representation induced by the neural network.

13



In the kernel setting, as shown in [12], one can prove that:∑
x∈Spool

k
[
Ssel

]
(x, x) = c tr

(
G−1

Ssel
GSpool

)
, GS := ∇θfθ(S)⊤∇θfθ(S) (4)

In regression with Gaussian likelihood, the following is equivalent:∑
x∈S

I(x; θ) = ∇θfθ(S)⊤∇θfθ(S)

which shows that by optimizing Eq. 4, we are essentially optimizing the same fisher objective Eq. 3.

Different from the original BAIT [7], we made the following changes. First, considering that our
neural network is relatively small, we use the full gradient NTK instead of the last-layer gradient.
Second, instead of only computing the Fisher information of merely the selected set and pool set, we
expand it by also considering the current training set. In combination, our new objective is:∑

x∈Strain∪Spool

kNTK
[
Strain ∪ Ssel

]
(x, x)

As discussed in [7], optimizing such a Fisher objective is intractable given the many potential different
combinations for Ssel. To address this, the same greedy forward–backward selection algorithms,
proposed in [7], are adopted. Given B number of samples to collect in a batch, the algorithm first
greedily selects 2B samples by:

argmin
x∈Spool

∑
x′∈Strain∪Spool

kNTK[Strain ∪ Ssel ∪ {x}](x′, x′)

After collecting 2B samples, it greedily removes B samples from the selected set by:

argmin
x∈Ssel

∑
x′∈Strain∪Spool

kNTK[Strain ∪ (Ssel \ {x})](x′, x′)

B Implementation Details

In this section, we provide a detailed description of our models, training procedure and the experiments
conducted in both simulation and real-world environments. All the experiments are run with a 6-DOF
UR10 robot, and on a workstation with an NVIDIA RTX 4070 Ti Super GPU and 32GB of RAM.

B.1 Dynamics Model

To predict the object’s final pose after a push, we use a neural network model with residual physics,
where the analytical physics formulation is adapted from [25]. To integrate this analytical model
into the neural network and enable efficient batch operations, we made the following simplifying
assumptions:

• Rectangular approximation. As required by this mode, we approximate every object by
a 2D Oriented Bounding Box (OBB). While this captures the overall geometry, it may
introduce errors at highly irregular features (e.g., the neck of a mustard bottle).

• Fixed frictional ratio. The frictional moment to force ratio c is object-specific and generally
unknown. We fix c = 0.05 for all objects, a value chosen empirically to best match our
real-world pushing experiments.

• Simplified contact and force application. We assume the pusher follows a straight-line
trajectory with a sinusoidal velocity profile. In reality, as the object rotates, the contact may
slide along its edge and the force direction would tilt away from perpendicular. To simplify
it, we hold the contact point fixed and assume the force is always perpendicular to that point,
maintaining perfect sticking (no-slip) contact throughout the push. This oversimplification
allows us to compute the final pose in a single vectorized integration step rather than
simulating incremental, step-by-step dynamics (see Eq. 5).

14



We push the object with a rigid rod mounted on the robot’s end effector. The push is defined with
parameters (s, o, d), and follows a sinusoidal velocity profile v(t). We choose the sinusoidal velocity
profile because it produces continuous and bounded acceleration and avoids sudden jerks. Additionally,
it provides an analytically tractable form where the total displacement d determines the entire velocity
profile.

Taking all of this into account, we derive the object’s relative final pose by first adapting the following
equation proposed in [25].

vx =
(c2 + x2

c) vpx + xc yc vpy
c2 + x2

c + y2c
, vy =

(c2 + y2c ) vpy + xc yc vpx
c2 + x2

c + y2c
, ω =

xc vy − yc vx
c2

where (xc, yc) is the contact point and (vpx, vpy) is the pusher speed. Under our assumption, they
are:

xc = Lobj yc = s, vpx = −v(t), vpy = 0

Given the local translational and rotational speed, we can compute the pose at time t by integration:

θ(t) =

∫ t

0

ω(t) dt,

x(t) =

∫ t

0

[
cos(θ(t)) vx(t)− sin(θ(t)) vy(t)

]
dt,

y(t) =

∫ t

0

[
sin(θ(t)) vx(t) + cos(θ(t) vy(t)

]
dt

(5)

For our neural network architecture, we employ a fully connected multilayer perceptron (MLP)
consisting of five hidden layers with sizes [32, 64, 128, 64, 32]. The network is designed to predict
the relative SE(2) pose of the object after a push. For standard MLPs, the input consists of the
push parameters, resulting in an input dimensionality of 3. In contrast, for the residual model, the
input additionally includes the output of the analytical physics model (as defined in Equation Eq. 5),
increasing the input dimensionality to 6.

All models are trained using a batch size of 16 for 1000 epochs, or until convergence. We adopt
the Adam optimizer in conjunction with a learning rate scheduler that reduces the learning rate on
plateau, helping to mitigate overfitting. During the skill learning process, the model is retrained from
scratch after each new data collection cycle—specifically, after acquiring an additional batch of 20
samples in simulation or 40 samples in the real world.

B.2 Motion Planner

To solve the Push-To-Grasp motion planning problem, we use the Open Motion Planning Library
(OMPL) [31] with the following specifications:

• State Space: SE(2), for an object’s unconstrained motion on a plane (table),

• Control Space: R3, for the 3-dimensional push parameter (s, o, d),

• State Validity Checker: True or False, based on if it is within the boundary of Cspace
feasible for the robot and if it is collision-free.

• Control Propagator: (xf , yf , θf ), propagating the SE(2) state based on the relative trans-
formation output of the dynamics model,

• Control Sampler: Random (OMPL default) / Active (ours),

• Goal Region: A narrow zone alongside the tabletop edge, defined such that the object’s
center of mass remains on the table surface and at least one corner of the object extends by
at least 2.5cm past the edge.

• Planner: SST, an asymptotically optimal kinodynamic planner, with a 10s planning time
limit.

15



B.3 Experiments

We conduct our simulation experiments using the Genesis simulator [28], which supports parallel
execution of multiple environments. Our setup includes a 6-DOF UR10 robot and multiple test
objects with different geometric shapes and physical characteristics from the YCB dataset [29]. The
simulated scene in the Genesis environment (shown in Fig. 7) replicates our real-world setup. To
accelerate both data collection and planning execution, we run 1000 environments in parallel during
the data-collection phase and 100 environments in parallel during the planning phase, as in Fig. 7a.

(a) Genesis Simulation (b) Real-World

Figure 7: Experiment Setup

We execute the same workflow on a physical robot as shown in Fig. 7b. For perception, we use an
Intel RealSense Depth Camera D455 for an overhead view and an Intel RealSense Depth Camera
D435 mounted on the end-effector for a more precise in-hand observation. Object pose is estimated
with the LANGSAM model [32, 33] to detect the position and template-matching for orientation.
Robot communication and control are handled via the robot’s default Real-Time Data Exchange
(RTDE) interface.

Additionally, in our real-world experiments we use a simple reset algorithm that automatically pushes
the object back toward the center of the robot’s high-manipulability workspace whenever it drifts
outside that region. This mechanism enables autonomous, continual learning without any human
intervention.

16


	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Methodology
	4.1 Residual Physics
	4.2 Uncertainty Quantification
	4.3 Active Learning
	4.4 Active Planning

	5 Experiments
	5.1 Skill Learning
	5.2 Kinodynamic Planning

	6 Conclusion
	7 Limitation
	Appendix
	A Active Learning Algorithms
	A.1 Posterior Estimation
	A.2 BAIT

	B Implementation Details
	B.1 Dynamics Model
	B.2 Motion Planner
	B.3 Experiments


