arXiv:2506.04646v2 [cs.RO] 18 Sep 2025

ACTIVEPUSHER: Active Learning and Planning
with Residual Physics for Nonprehensile Manipulation

Zhuoyun Zhong, Seyedali Golestaneh, and Constantinos Chamzas

Abstract— Planning with learned dynamics models offers a
promising approach toward versatile real-world manipulation,
particularly in nonprehensile settings such as pushing or rolling,
where accurate analytical models are difficult to obtain. However,
collecting training data for learning-based methods can be costly
and inefficient, as it often relies on randomly sampled interactions
that are not necessarily the most informative. Furthermore,
learned models tend to exhibit high uncertainty in underexplored
regions of the skill space, undermining the reliability of long-
horizon planning. To address these challenges, we propose
ACTIVEPUSHER, a novel framework that combines residual-
physics modeling with uncertainty-based active learning, to
focus data acquisition on the most informative skill parameters.
Additionally, ACTIVEPUSHER seamlessly integrates with model-
based kinodynamic planners, leveraging uncertainty estimates
to bias control sampling toward more reliable actions. We
evaluate our approach in both simulation and real-world
environments, and demonstrate that it consistently improves
data efficiency and achieves higher planning success rates in
comparison to baseline methods. The source code is available
at https://github.com/elpis-lab/ActivePusher.

I. INTRODUCTION

Model-based planning methods offer a powerful framework
for generalizing robotic behavior and enabling long-horizon
decision making [1]. Such methods often require a predictive
model of the system’s dynamics, especially in kinodynamic
planning where dynamic constraints must be considered. The
effectiveness of these approaches thus critically depends on
the accuracy of the underlying forward dynamics model.
Inaccuracies in this model can cause cascading errors during
execution, particularly in contact-rich settings such as nonpre-
hensile manipulation (e.g., pushing and rolling), where even
minor deviations in predicted trajectories may accumulate
and lead to irrecoverable task failure.

Accurately modeling the dynamics for these tasks is
challenging. Analytical physics-based models often rely on
simplified assumptions about friction, contact geometry, and
mass distribution, making them brittle in practice [2]. As an
alternative, data-driven approaches can learn dynamics directly
from interaction data, either from scratch or by refining
simplified analytical models through residual learning [3],
[4]. However, these methods face two key limitations in real-
world robotic settings:

« Sample inefficiency: Learning accurate models often
requires large amounts of interaction data, which is costly
and time-consuming to collect on physical systems.

All authors are affiliated with the Department of Robotics Engineer-
ing, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
{zzhong3, sgolestaneh, cchamzas} @ wpi.edu.

AcCTIVEPUSHER

Active Learning

Which skill parameters
to practice?

I want to improve
my pushing skills

I want to push to
the edge to grasp

Which skill parameters
to use?

Active Planning

Fig. 1: Two key challenges addressed by ACTIVEPUSHER. During learning,
the robot must choose the most informative skill parameters to efficiently
improve its skills (Active Learning). When planning, the robot should select
skill parameters with low model uncertainty to ensure reliable task completion
(Active Planning).

o Inaccuracy in underexplored regions: Models may
perform poorly in sparsely explored regions of the
skill space, leading to unreliable predictions and large
deviation from plans during execution.

In this paper, we propose ACTIVEPUSHER, a framework
that tightly integrates residual physics, active learning, and
active kinodynamic planning, to address both challenges in
the context of nonprehensile pushing, illustrated in Fig. 1. The
code idea is to quantify epistemic uncertainty in a learned
neural network model with residual physics. This uncertainty
estimate allows the system to actively target informative skill
parameters for learning and reliable ones for planning.

To estimate the epistemic uncertainty of a neural network
model, we leverage the Neural Tangent Kernel (NTK) [5].
During learning, rather than sampling pushing actions at
random to practice, ACTIVEPUSHER actively queries the
NTK for uncertainty estimation and identifies actions with the
highest expected information gain using Batch Active learning
via Information maTrices (BAIT) strategy [6]. This targeted
exploration enables the model to improve rapidly with far
fewer interactions. During planning, the uncertainty estimates
are incorporated into a sampling-based kinodynamic planner
[1], biasing action sampling toward high-confidence skill
parameters to maximize task success. By focusing on where
the model is uncertain to learn, and where the model is certain

https://github.com/elpis-lab/ActivePusher
https://arxiv.org/abs/2506.04646v2

to act, our approach tightly integrates learning and planning,
enabling robust nonprehensile manipulation with few real-
world interactions per task. Crucially, ACTIVEPUSHER can
operate without high-fidelity simulation, large offline datasets,
or human demonstrations. Our main contributions are:

o Active learning of skill models. We introduce a
principled framework for data-efficient nonprehensile
skill learning by selecting skill parameters that maximize
expected information gain, enabling data collection in
the most informative manner.

o Active uncertainty-aware planning. We propose a
novel planning strategy that integrates model uncertainty
into an asymptotically optimal kinodynamic planner,
guiding action sampling toward reliable actions and
improving overall task success rate.

o Empirical validation in simulation and the real
world. We demonstrate the effectiveness of our approach
with multiple objects and nonprehensile manipulation
tasks, showing significantly improved data efficiency and
planning success over baselines.

II. RELATED WORK

ACTIVEPUSHER draws ideas from several areas, such as
residual learning, active learning and kinodynamic planning.
Here, we briefly review each of these areas in the context of
nonprehensile manipulation, with a focus on pushing.

Residual Model Learning combines the strengths of
analytical and data-driven approaches by training a neural
network to predict corrections to an approximate physics
model. In robotic manipulation, pure analytical models and
physics simulations can offer useful priors but are often coarse
approximations of real dynamics, sensitive to assumptions
on physical parameters [7]. Conversely, fully data-driven
methods [8] can model complex behaviors without priors but
typically require large amounts of real-world data. Residual
learning reduces this burden by modeling only the error
between physics and reality, improving data efficiency and
real-world performance [3], [4]. Building on this paradigm,
ACTIVEPUSHER further improves sample efficiency by ac-
tively selecting informative data points for refinement.

Active Learning is a well-established topic in machine
learning that aims to improve sample efficiency by actively
selecting which data points to label [6], [9], [10]. This
paradigm naturally aligns with self-supervised robotic learning
settings, where the data collection is expensive and the robot
needs to autonomously choose which interactions to collect.
Several robotic learning approaches have leveraged active
learning to improve training efficiency [11]. In the context of
skill learning, recent methods [12], [13] have applied active
learning strategies to accelerate skill learning with binary
outcome using Gaussian Process (GP). However, existing
active skill learning approaches focus primarily on binary
success classification, with limited attention to regression-
based skill models using neural networks. In contrast, our
work applies active learning to improve the data efficiency of
training predictive skill models, and enable their integration
into kinodynamic planners.

Nonprehensile Manipulation, especially planar pushing
problems, has been addressed by many approaches such as
Model Predictive Control (MPC) and reinforcement learning
(RL). RL methods [14], [15] can acquire complex behaviors,
but require large amount of interaction data and often
fail under distribution shift and sim-to-real transfer. MPC
approaches that embed learned or physics models [7], [16],
[17] provide robust execution but require high-frequency state
observation and control for closed-loop correction. Meanwhile,
both methods remain inherently myopic and prone to local
minima. On the other hand, kinodynamic motion planning
methods provides global reasoning and can be generalized to
complex environments [18], [19]. However, previous works
often rely on analytical models, assume regular-shaped objects,
and handle execution errors through online replanning [19],
which cannot always recover from failure. Our approach
instead leverages a learned dynamics model and its uncertainty
estimates to actively select reliable actions to build plans,
enabling robust plans from the beginning.

III. PROBLEM STATEMENT

Kinodynamic Planning: Let x € X denote the state and
state-space, and v € U denote the control and control-space
of a robotic system [1]. We consider a dynamic system that
follows time-invariant differential equations:

(t) = f*(x(t), u(t)) €0

where f* is the true (unknown) forward dynamics model of
the system. Let Ay, C X denote the obstacle (invalid) state
space, and Xpee = X\ Xops denote the free (valid) space. The
start state iS Tyt € Afree, and the goal region is Xgoa € Xpree-

The kinodynamic planning problem is to determine a
control duration 7 and a control function w : [0,7] — U
such that the resulting trajectory satisfies z(0) = Zgan,
x(T) € Xgoal, and z(t) € Xpee for all ¢ € [0, T].

In this work, we focus on a planar pushing task, modeled as
kinodynamic planning. We treat the state of the manipulated
object as the system state and adopt an object-centric isotropy
assumption, where the effect of a push is invariant to the
object’s current pose. In addition, we assume that a static
equilibrium condition is achieved after each action. Formally,
this reduces the system dynamics to:

o(t) = f*(u(t)) 2

Active Learning of Forward Dynamics Models: We
define an interaction as the application of a control and
observation of the associated states. Under the isotropic
assumption, the interaction can be simplified to (u, ©). A
set of applied controls and observed state changes forms a
dataset for model learning.

The active learning of forward dynamics models problem
is to approximate the unknown dynamics model f* with a
learned model f, such that it predicts the outcomes of applied
controls with high predictive accuracy, while minimizing the
number of interactions required for training with the help of
uncertainty quantification.

Active Kinodynamic Planning: Inspired by the concept
of active learning with uncertainty quantification [6], [9],
we define active kinodynamic planning as incorporating
uncertainty estimation from the learned dynamics model in
kinodynamic planning. The problem aims at finding a control
trajectory 4 such that the resulting trajectory X satisfies the
planning requirements with high confidence.

IV. METHODOLOGY

In this work, we discretize the continuous dynamic sys-
tem into a discrete-time formulation. Each control action
corresponds to a parameterized push skill that is executed
over a fixed duration, and the system is observed only at
the terminal state. This design choice allows us to work
with skill abstractions and is consistent with practical sensing
conditions, where object poses are often observable only after
the push concludes (e.g., due to vision occlusion). The system
dynamics becomes:

Azn = [(un) 3

We represent each object as a two-dimensional oriented
bounding box (OBB) and the planar push control is parame-
terized by three variables, as shown in Fig. 2:

u=(s,0,d) 4)

where s € {1,...,4} selects one of the box’s sides, o is the
lateral offset along that side from the center, and d is the
total push distance. The end-effector follows a straight-line
fixed-duration (7 = 2 s) sinusoidal velocity profile:
dr. t
v(t) = - [sm (271' . 2) + 1} Q)
The system’s state « is defined as the object’s SE(2) state
T. The effect of the push f*(u) is therefore defined as the
SE(2) transformation between the object’s initial and final
poses. Unlike Euclidean states with additive updates, evolution
on transformation is expressed through multiplication:

Tn+1 = Tnf*(un) = TnATna
f*(un) = AT"n = TnilTnJrl
A. Residual Physics

In this section, we introduce the model f(u), which will be
trained to approximate the unknown true dynamics f*(u). To
effectively predict in a low-data setting, we adopt the approach
of learning residual physics, which integrates a physics-based
model with a neural network [3], [4]. Rather than replacing
the physics-based model, the neural network is tasked with
learning the residual error, i.e. deviations from the idealized
model output to the real observations. This preserves the
physical plausibility while allowing the learned component
to correct and improve overall accuracy.

For the analytical model, we follow the dynamic model
proposed in [20] to predict object behavior given pusher
motion. In this modeling, the object is treated as a rigid
rectangle pushed under quasi-static assumption, with frictional
forces obeying Coulomb’s law. The model further requires
knowledge of the object’s shape and the ratio of frictional

(6)

d ‘ —_—

ol ng 3
I \w 4y Push
offl s e Parameters
0} /il

-

0 Object
Pose

OBB —>

Fig. 2: Neural network (NN) with residual physics architecture. The network
takes both the control parameters and the output of the physics model to
predict residuals, which are then added to the physics-based output to produce
the final prediction.

moment to frictional force c¢,4t;,. However, we do not assume
having access to these exact parameters. Thus, the analytic
prediction serves only as a coarse estimation on how the
object will move. Furthermore, to keep the model compatible
with our neural network components and enable efficient
batch operations, additional simplifications are applied. We
set a fixed ¢,.q150 = 0.0187 as recommended in [20]. Also, we
assume the contact point is fixed and the force is perpendicular
to the point, maintaining perfect sticking contact throughout
the push. Please refer to our source code for more details.

As illustrated in Fig. 2, our neural network takes both the
skill parameters and the output of the physics equation as input.
This design enables the network to reason about both the
nominal dynamics and the data-driven corrections required to
account for object-specific and contact-specific variations. The
network finally outputs the residual, and the model combines it
with the physics equation output to provide the final estimate.
We train the combined model by minimizing the SE(2)
distance between prediction and observation, defined in Open
Motion Planning Library (OMPL) [21]:

D(T;,Tj) = Dr2(pi, pj) + Wo - Dso2)(risr5) (1)

where p € R? and 7 € SO(2) are the positional and rotational
component of the SE(2) state T. Dgz(-,-) computes stan-
dard Euclidean norm bewteen positions, while Dgo(2)(:,)
measures the geodesic angular difference between two SO(2)
angles. The scalar w, weights the rotational component. In
this work, we set w, = 0.2 to bias toward positional accuracy.

B. Uncertainty Quantification

Traditionally, neural network-based dynamics models pro-
duce only point estimates of action outcomes, lacking measure
of their prediction uncertainty. By explicitly quantifying the
epistemic uncertainty in the learned model, ACTIVEPUSHER
enables both informative data acquisition and uncertainty-
aware robust planning, as illustrated in Fig. 3. During learning,
this uncertainty guides active data collection by prioritizing
the most informative samples in under-explored regions,
thereby improving data efficiency (Sec. IV-C). At execution
time, the planner leverages this uncertainty to select reliable
actions from well-explored regions of the action space,
resulting in more robust planning (Sec. IV-D).

a) Estimated Model Uncertainty
Uncertainty

Skill
Parameters

Reliable
Unreliable

~<— Uninformative
~<— Informative

b) Active Learning

¢) Active Planning

Fig. 3: a) ACTIVEPUSHER quantifies the model uncertainty of the learned
model (Sec. IV-B). b) During the learning phase, ACTIVEPUSHER chooses
the most informative push to apply to increase the learning efficiency (Sec. I'V-
(). ¢) During planning the most reliable pushes are chosen to maximize the
task success rate (Sec. [V-D).

ACTIVEPUSHER estimates model uncertainty by leveraging
the correspondence between neural network and Gaussian
Process (GP) with Neural Tangent Kernel (NTK) [5]. Given
a fully-connected neural network fy(u) with infinite width,
parameterized by weights 6, its NTK stays constant during
training and is defined as

(Vofo(u), Vofo(u')) ¥

where Vj fg(u) denotes the gradient of the network output
with respect to the parameters 6, v and v’ are two different
inputs, and (-, -) is the inner product of two gradient vectors.

After training with gradient descent to convergence, the
predictive distribution of inifite-width neural network fg(u)
is shown to be equivalent to GP regression governed by the
NTK [5]. Therefore, the predictive distribution, capturing
model epistemic uncertainty, can be approximated by a GP
with NTK prior:

kNTK(Uv U/) =

GP(0, knrk (u, u')) 9)

NTK encodes a notion of similarity between two inputs
from the perspective of the neural network. The gradient
Vo fo(u) reflects how sensitive the network’s prediction fy(u)
is to infinitesimal perturbations in parameter 6. Intuitively, two
inputs u and v’ are considered similar if their gradients are
aligned. In this case, model parameter updates that improve
the prediction at w will also tend to improve the prediction at
u'. Similarity is directly relevant to predictive uncertainty, as
the model is less uncertain in regions where multiple inputs
share aligned gradients. This notion of similarity is precisely
captured by the NTK, where gradient similarity is computed.

Empirically, for finite-width networks, the kernel will
change during the training process. But NTK after training
convergence (also known as empirical NTK) still provides
accurate model uncertainty estimates in practice [5], [22].

Assume we train neural network model f(u) with training
data S;yqin and their corresponding observed labels Liqin.
Here, a set of data S is a collection of skill action w.
As mentioned, we can model f as a GP with prior knrk.
Conditioned on the observed Syqin and Lyqir, the resulting
posterior predictive covariance enables estimation of model
uncertainty on unobserved data points within the data pool
Spool- Formally, given a pre-defined inherent data noise oy,
the posterior predictive covariance over an unlabeled data
pool Syoo1 can be represented as:

COV(Spool) = KNtk (Sp0017 Spool)

- KNTK(Spooh Strain)K;IKNTK (Straim Spool)»

where Kt == KNTK (Strain; Strain) + 03]

(10)
where Knrk(+,-) is the Gram matrix of pairwise NTK
values between two vector inputs. We set oq = 0.005 in
our experiments. Since o is fixed, the posterior covariance
in Eq. 10) primarily reflects epistemic uncertainty arising
from limited training data. By isolating the diagonal terms of
the posterior covariance matrix, we obtain per-sample model

uncertainty estimates for Spooi:
Var(Spoo1) = Diag(Cov(Spoot)) 11

C. Active Learning

Algorithm 1: Active Learning

Input: Kernel k, training round N, batch size B,
initial training set Sypqin, pool set Spool

1 fori< 1t N do

2 Sset < Acquire(k, Sirains Spoots B);

3 Acquire labels of Sg.;;

4 Strain — Strain U Ssel;

5 Spool — Spool \ Ssel;

6 Train model on S;,.4;, With corresponding labels
and update kernel k;

Rather than passively training on a randomly collected
dataset, active learning tries to iteratively queries the most
informative batch of samples to improve model performance
with fewer labels [6], [9]. The general active learning process
in a kernel setting is defined in Alg. 1. In each of the IV
training round, we perform uncertainty estimation over all
unlabeled data in Spool and select Sy set with B informative
samples. After quering their labels and moving them into the
training set Sy,in, We retrain the model with the expanded
Sirain and proceed to the next round.

Given predictive uncertainty estimation, one can apply
different acquisition strategies. In this work, we adopt the
BAIT algorithm [6] with Fisher information to actively select
the most informative action batch to collect.

Intuitively, the Fisher information encodes how sensitively
the model’s predictions respond to changes in its parameters.
Covering the Fisher space ensures that the selected batch spans
the directions along which the model can still learn the most.
BAIT aims to select B samples whose combined per-sample
Fisher embeddings best approximate (in Frobenius norm)

the global Fisher information, yielding a representative batch
that jointly captures both model uncertainty and diversity.
Specifically, it seeks to minimize the trace of the inverse
Fisher information matrix of the selected batch (i.e., the model
uncertainty after selecting a batch), pre-multiplied by the
Fisher information of the entire unlabeled pool:

Ssel = arg min tr (Z I(u;6‘)> Z I(u;0)

Seel gspo"l UE Sgel ue Spm,l
12)
where I(u;0) is the Fisher information matrix associated with
model parameter § at input u. In Gaussian regression, the
Fisher information matrix of a set S reduces to the outer
product of the output gradients:

Z I(u;0) = Vo fo(S)' Vofa(S)

ueS

13)

Let k[S] denote the kernel & conditioned on S, as shown
in [10], one can prove that, with NTK kernel:

Z k[Ssei](u, u) = ctr (Ggslel GSpooz,) ,

uespool
where Gs := Vi fo(S) Vo fo(S)

Combined with Eq. 13, we show that optimizing Eq. 14 is
equivalent to optimizing the Fisher objective Eq. 12 in BAIT.
Different from the original BAIT, we made the following
changes. First, considering that our neural network is relatively
small, we use the full gradient NTK instead of the last-
layer gradient as in the original design. Second, rather than
computing the Fisher information of merely the selected set
Sser and pool set Spo01, We expand Eq. 14 by also considering
the current training set Sy..qin. These changes better exploit
the full representational capacity of the network and ensure
that acquisition decisions account for both the unlabeled pool
and the knowledge already contained in the training set. In
combination, our acquisition strategy is as follows:

(14)

ACquire(k7 Strainy Spool7 B) =
Z kNTK [Strain U Ssel] (’U,7 U)

UEStrainUSpool

arg min (15)

Sse1CSpoot

Optimizing such a Fisher objective is intractable given the
many potential different combinations for S,.;. To address
this, the same greedy forward-backward selection algorithms,
proposed in [6], are adopted to greedily select Sge;.

D. Active Planning

We formulate nonprehensile pushing as a kinodynamic
planning problem in the object’s SE(2) state space. In this
formulation, each parameterized push action u becomes a
discrete control that drives the object’s state through forward
simulation of the learned dynamics. We use an asymptotically
near optimal kinodynamic planner, specifically SST [23], to
explore the object’s state space directly. SST incrementally
expands a tree of dynamically feasible trajectories by forward-
propagating sampled controls and pruning redundant nodes to
maintain sparsity. Optionally, given a optimization objective,

it progressively improves trajectory cost while steering the
search toward the goal region.

In the absence of model error, control sequences found by
SST succeed by design. In practice, however, accumulated
prediction errors in the learned dynamics can lead to execution
failures. To improve robustness, we integrate epistemic
uncertainty estimates into the control sampling step.

Algorithm 2: Active Sampling

Input: Kernel k, training set Sg.i,, batch size b
1 Sy + random_sampling(b);
2 Var <
query-uncertainty(k, Syan, Sv) (Fq. 11);
3 u < argmin,, ¢ g, Var[ul;
4 return u

Specifically, as summarized in Alg. 2, at each planning
step, a batch of candidate pushing controls of size b is first
sampled. We then evaluate the epistemic uncertainty of the
learned model for these controls (Eq. 11). Instead of selecting
randomly, we choose the control with the lowest predicted
uncertainty. This strategy biases control sampling in planning
toward more reliable actions, which is based on the intuition
that the model is more accurate in well-explored regions of
the skill space.

Because the biased active sampler still has full support over
the control space (i.e., every action has non-zero probability
of being sampled), the planner retains the probabilistic
completeness and asymptotic optimality guarantees of SST.
In effect, uncertainty estimates guide the planner to prioritize
reliable regions of the skill space while maintaining theoretical
coverage of the entire domain.

V. EXPERIMENTS

In this section, we provide a detailed description of our
models, training procedure and the experiments conducted in
both simulation and real-world environments. All the learning
and planning experiments are run on a workstation with an
NVIDIA RTX 4070 Ti Super GPU and 32GB of RAM.

(a) MuJoCo Simulation

Fig. 4: Experiment Setup

Our experiment setup includes a 6-DOF UR10 robot and
multiple objects from the YCB dataset [24], with different
geometric shapes and physical characteristics, to test the
robustness of our approach across a range of physical
characteristics.

In real world, object pose is estimated with Foundation-
Pose [25] using an Intel RealSense Depth Camera D435
mounted on the end effector. Additionally, for real-world data

collection, we implement a reset algorithm that automatically
pushes the object back toward the center of the robot’s
high-manipulability workspace whenever it drifts outside
that region. This mechanism enables autonomous, continual
learning without any human intervention. To execute the
push parameters with the robot, we use a global redundancy
resolution method [26] as inverse kinematics (IK) solutions,
which guarantees valid and smooth joint trajectories within a
certain workspace region.

We perform our simulation experiments using MuJoCo
Simulator [14], which allows parallel executions of multiple
environments, enabling efficient large-scale testing. The
simulated scene in the simulation environment replicates our
real-world setup, as shown in Fig. 4.

We evaluate the proposed method in two settings: (i) Skill
Learning, where we measure active learning performance
(Sec. V-A), and (ii) long-horizon Kinodynamic Planning,
where we assess the effectiveness of both active learning
and planning (Sec. V-B).

A. Skill Learning

As discussed in Sec. I'V-C, active learning can run continu-
ously to collect training data and update models. However, for
the purpose of repetitive evaluation and fair comparison across
methods, we adopt a standard pool-based evaluation setup [6],
[9]. In simulation, we first construct a candidate pool of 9,000
push actions for each object, while in the real world, each
object has a pool of 1,000 actions. During training, at each
acquisition stage, a batch of 10 samples S, is selected from
the pool to expand the training set and update the model. This
process is repeated for 10 stages until 100 data are collected.
We also prepare independent test sets of 1,000 samples for
each object in either simulation or real world.

Four objects in simulation (Banana, Mug, Cracker Box and
Mustard Bottle) and two objects in the real world (Cracker Box
and Mustard Bottle) are used, and we evaluate the following
five methods:

o Pure Physics: The analytical dynamics model.

e MLP Random: A fully connected multi-layer perceptron

(MLP) consisting of five hidden layers with sizes [32,
64, 64, 32, 32] trained with random push actions.

e Residual Random: The hybrid model as described in
Sec. IV-A. The physics is the same as Pure Physics.
Meanwhile, the neural network architecture and data
collection method are the same as MLP Random.

e MLP BAIT: The same MLP architecture as MLP Random,
but trained via our NTK-driven active learning pipeline
to collect informative data.

e Residual BAIT: The hybrid residual model as in Residual
Random, but trained with active learning pipeline.

All models are trained using a learning batch size of 20 for
1000 epochs until convergence. We adopt the Adam optimizer
in conjunction with a learning rate scheduler that reduces the
initial learning rate 0.001 on plateau, mitigate overfitting.

Each training is repeated 5 times and the summarized
results for prediction SE(2) error (Eq. 7) on the test set are
shown in Fig. 5. The models with residual physics features

017 Banana - Sim Mug - Sim
0.15 L
013 | \
= b
o J
[5 0.11 \ x
~ 3 N\
0.09 NN
0.07 \\\ \\\\\
N N =
0.05 o AN p———r—
s——==
0.03
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
016 Cracker Box - Sim Mustard Bottle - Sim

w 4 \: .\'
0.06 \3\ \.E;\:::\._‘
0.04 \sh_\ \=$ES;
0.02 s S-.

10 20 30 40 50 60 70 80 90 100
Cracker Box - Real

10 20 30 40 50 60 70 80 90 100
Mustard Bottle - Real

0.16

0.14 |

0.12 N\

8
£0.10

m

o 0.08

o ; ;

“0.06 \s\\
=-._

0.04

0.02
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of Data
MLP Random
Residual Bait (Ours)

—— Pure Physics —— MLP Bait

Residual Random

Fig. 5: Skill Learning results show SE2 prediction error for 2 real objects,
and 4 simulated objects from [24]: Banana, Mug, Cracker Box and Mustard
Bottle. The active learning methods outperform random data collection, and
models with residual physics performs better in low-data regime.

show a clear improvement when data is limited. Additionally,
the active learning approach consistently outperforms random
sampling across all objects, either by reaching the same level
of accuracy with fewer training samples or by achieving
higher accuracy given the same amount of data. By jointly
leveraging active learning and analytical physics, our method
Residual BAIT can achieve comparable accuracy to the final
performance of baseline MLP Random while requiring only
55% of the training data on average.

In practice, active learning can be run continuously, with
data collection terminated once validation performance con-
verges, or according to a task-specific criterion [27].

B. Kinodynamic Planning

In this experiment, we demonstrate the performance of
learned models integrated with a kinodynamic planner for two
downstream tasks. The planning was conducted in the object’s
state space, defined as X = SFE(2), with a control space
U = R? corresponding to the pushing parameters described
in Sec. IV. The valid state space X'f,.c. is constrained to the
table surface and are frree of collisions with obstacles.

! Boundary ! p Boundary
1 1 1

i i H Obstacles

i B

i] i s

i i i g ‘

i . i i 3

i i i %

i P {]

! Initial Pose ! !

1 1 1

i i i

o B bt for the task o
i Object for the task ——— | ; Object for the task —

(a) Push to Region (b) Push to Edge

Fig. 6: 2D schematic of the planning tasks

The two task environments are shown in Fig. 6. In the
simpler "Push to Region” task, a mustard bottle is initialized
randomly and needs to be pushed to a 0.1m x 0.1m region
at the table center. The more challenging “Push to Edge’
requires pushing a non-graspable cracker box toward the table
edge to enable a feasible pick-up, with two cylinder obstacles
(radius 0.04m) present. The goal is defined geometrically:
the object’s center of mass remains on the table while at least
one corner extends beyond 0.03m from the boundary.

As mentioned previously, we use SST [23] in OMPL [21]
with a path-length optimization objective to plan for both tasks.
In simulation, we solve 100 randomly generated problems
for each task and repeat the planning 5 times. For real
world experiment, we solve 20 randomly generated problems
once. For all the problems, we compare the default uniform
sampling method (Regular Planning) with our proposed active
sampling method (Active Planning). To also assess the impact
of model prediction accuracy on planning outcomes, we
evaluate baseline model MLP Random and proposed model
Residual BAIT, described in the previous section Sec. V-A,
with different data sizes.

All generated plans are executed in an open-loop manner.
Performance is evaluated by task success rate and path-
tracking error. A task is considered successful if the goal
is reached while maintaining validity, and the path-tracking
error is defined as the average SFE(2) deviation along the
trajectory. The results are summarized in Fig. 7.

The results of the experiment show that the planning
performance is closely tied to the model prediction accuracy
as expected. More accurate models generally produce plans
with higher task success rates and lower execution errors.
In addition, incorporating active action sampling further
improves performance. By steering the planner toward actions
in which the model is more confident, active planning tends
to select actions with potentially lower execution error. As
a result, active planning consistently outperforms regular
planning in both success rate and tracking accuracy.

s

C. Closed-loop Execution

All previous experiments are conducted in an open-loop
setting, where the planned control sequence is executed
without feedback. In practice, deviations accumulate during
execution, and replanning can improve robustness. To examine
this, we repeat the same tasks in a closed-loop manner. We
define a recoverable failure as an execution that does not
reach the goal but remains in the valid state space. The
system can replan within 1 second and continue execution. In

Push to Region - Sim

Push to Edge - Sim

0.8 0.16
Q
5 5
& 0.6 012 8
2 s3]
(0]
S04 0.08
3 17
7
0.2- -0.04
007 20 30 40 50 60 70 0 9 100 10 20 30 40 50 60 70 s0 90 10000
L0- Push to Region - Real Push to Edge - Real 020

Success Rate

20 40 60 80 100 20 40 60 80 100"
Number of Data

—— Regular Planning with MLP Random Success Rate
—— Regular Planning with Residual Bait

—— Active Planning with Residual Bait (Ours)

=== Tracking Error

Fig. 7: Kinodynamic Planning results show that more accurate dynamics
models lead to higher task success rates. Additionally, active planning tends
to select actions with lower execution error and further improves task success.

o

Py

Success Rate (Closed-loop)

le3 led les
Data Size (Log scale)
—— Active Planning with Residual Bait (Ours) —e— Push to Region
—— Regular Planning with MLP Random

HACMan

—=— Push to Edge

Fig. 8: Closed-loop Execution results show Our method outperforms
HACMan, especially in Push to Edge task, while requiring far less data and
transferring effectively to complex environments with novel obstacles.

contrast, irrecoverable failures occur when the object collides
with obstacles, falls off the table, or exceeds the planning
horizon of 10 control steps. We additionally compare against
HACMan [15], a state-of-the-art RL method that executes
closed-loop with discrete pushing actions learned entirely
from interaction data. Results are shown in Fig. 8.

On the Push to Region task, ACTIVEPUSHER can reach
100% success rate with replanning. HACMan can also reach
100% success but requires orders of magnitude more data.
On the more challenging Push to Edge task, HACMan
struggles with distribution shift: obstacles are randomized
during training but differ in placement during evaluation.
In contrast, our method requires far less data and transfers
effectively to novel obstacles and goal constraints.

We also show that closed-loop replanning alone does not
eliminate all failures. In the Push to Edge task, an inappro-
priate initial plan often drives the object into irrecoverable
states. This emphasizes the importance of generating robust
plans from the beginning.

Finally, sim-to-real transfer remains a challenge for RL-
based approaches. As reported in [15], HACMan achieves
only about 70% success in simple planar push tasks without
obstacles. In contrast, our method can be trained directly and
efficiently with limited real-world data, achieving robust per-
formance without additional adaptation even with obstacles.

VI. CONCLUSION

In this paper, we present ACTIVEPUSHER, a framework
that integrates residual physics, active learning, and active
kinodynamic planning. By explicitly modeling epistemic un-
certainty using NTK, our method actively gathers informative
training data with BAIT acquisition function, and biases
kinodynamic planning toward reliable actions. Experiments
in both simulation and real-world pushing tasks demonstrate
that ACTIVEPUSHER achieves higher prediction accuracy
and planning success with fewer interactions compared to
baseline approaches. This integration of learning and planning
offers a promising path toward data-efficient and reliable
nonprehensile manipulation.

For future extension, this framework can be extended to
jointly model both epistemic and aleatoric uncertainty, thereby
capturing action-dependent noise characteristics. Another
direction is to broaden its scope beyond the planar pushing to
encompass diverse object geometries, richer contact dynamics,
and SE(3) nonprehensile skills.

REFERENCES

[1] A. Orthey, C. Chamzas, and L. E. Kavraki, “Sampling-based motion
planning: A comparative review,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 7, no. 1, pp. 285-310, July 2024.
https://doi.org/10.1146/annurev-control-061623-094742

[2] M. T. Mason, “Toward robotic manipulation,” Annual Review of

Control, Robotics, and Autonomous Systems, vol. 1, no. Volume 1,

2018, pp. 1-28, 2018. https://www.annualreviews.org/content/journals/

10.1146/annurev-control-060117-104848

A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser,

“Tossingbot: Learning to throw arbitrary objects with residual physics,”

IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1307-1319, 2020.

https://ieeexplore.ieee.org/document/9104757

[4] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B.
Tenenbaum, and A. Rodriguez, “Augmenting physical simulators
with stochastic neural networks: Case study of planar pushing
and bouncing,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 3066-3073.
https://ieeexplore.ieee.org/document/8593995

[5] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel:
Convergence and generalization in neural networks,” Advances
in neural information processing systems, vol. 31, 2018. https:
/larxiv.org/abs/1806.07572

[6] J. Ash, S. Goel, A. Krishnamurthy, and S. Kakade, “Gone fishing:
Neural active learning with fisher embeddings,” Advances in Neural
Information Processing Systems, vol. 34, pp. 8927-8939, 2021.
https://arxiv.org/abs/2106.09675

[71 F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile

manipulation with hybrid model predictive control,” The International

Journal of Robotics Research, vol. 39, no. 7, pp. 755-773, 2020.

https://doi.org/10.1177/0278364920913938

P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning to

poke by poking: Experiential learning of intuitive physics,” in Advances

in Neural Information Processing Systems, D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran

Associates, Inc., 2016. https://proceedings.neurips.cc/paper_files/paper/

2016/file/c203d8al51612acf12457e4d67635a95-Paper.pdf

[9] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” in International conference on machine learning.
PMLR, 2017, pp. 1183-1192. https://arxiv.org/abs/1703.02910

[3

=

[8

[t}

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Holzmiiller, V. Zaverkin, J. Kistner, and I. Steinwart, “A
framework and benchmark for deep batch active learning for
regression,” J. Mach. Learn. Res., vol. 24, no. 1, Jan. 2023.
https://dl.acm.org/doi/abs/10.5555/3648699.3648863

A. T. Taylor, T. A. Berrueta, and T. D. Murphey, “Active learning
in robotics: A review of control principles,” Mechatronics, vol. 77,
p- 102576, 2021. https://www.sciencedirect.com/science/article/pii/
S50957415821000659

Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez,
“Learning compositional models of robot skills for task and motion
planning,” The International Journal of Robotics Research, vol. 40, no.
6-7, pp. 866—894, 2021. https://doi.org/10.1177/02783649211004615

A. LaGrassa, M. Lee, and O. Kroemer, “Task-oriented active learning
of model preconditions for inaccurate dynamics models,” in 2024
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2024, pp. 16445-16445. https://ieeexplore.ieee.org/abstract/
document/10611488

K. Zakka, B. Tabanpour, Q. Liao, M. Haiderbhai, S. Holt,
J. Y. Luo, A. Allshire, E. Frey, K. Sreenath, L. A. Kabhrs,
et al., “Mujoco playground,” arXiv preprint arXiv:2502.08844, 2025.
https://arxiv.org/abs/2502.08844

W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held, “Hacman:
Learning hybrid actor-critic maps for 6d non-prehensile manipulation,”
in Conference on Robot Learning. PMLR, 2023, pp. 241-265.
https://hacman-2023.github.io/

M. Bauza, F. R. Hogan, and A. Rodriguez, “A data-efficient approach
to precise and controlled pushing,” in Conference on Robot Learning.
PMLR, 2018, pp. 336-345. https://proceedings.mlr.press/v87/bauzal 8a.
html

G. Wang, K. Ren, and K. Hang, “Uno push: Unified nonprehensile
object pushing via non-parametric estimation and model predictive
control,” in 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2024, pp. 9893-9900.
https://ieeexplore.ieee.org/document/10802843

K. Ren, G. Wang, A. S. Morgan, L. E. Kavraki, and K. Hang,
“Object-centric kinodynamic planning for nonprehensile robot
rearrangement manipulation,” arXiv preprint arXiv:2410.00261, 2024.
https://arxiv.org/abs/2410.00261

K. Ren, P. Chanrungmaneekul, L. E. Kavraki, and K. Hang,
“Kinodynamic rapidly-exploring random forest for rearrangement-based
nonprehensile manipulation,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2023, pp. 8127-8133.
https://ieeexplore.ieee.org/abstract/document/10161560

K. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing
by pushing using tactile feedback,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 1,1992,
pp. 416-421. https://ieeexplore.ieee.org/abstract/document/587370

I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72-82, December 2012, https://ompl.kavrakilab.org.

M. A. Mohamadi, W. Bae, and D. J. Sutherland, “Making look-ahead
active learning strategies feasible with neural tangent kernels,” Advances
in Neural Information Processing Systems, vol. 35, pp. 12542-12 553,
2022. https://dl.acm.org/doi/abs/10.5555/3600270.3601181

Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal
of Robotics Research, vol. 35, no. 5, pp. 528-564, 2016.
https://doi.org/10.1177/0278364915614386

B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and
A. M. Dollar, “Benchmarking in manipulation research: Using
the yale-cmu-berkeley object and model set,” IEEE Robotics
& Automation Magazine, vol. 22, no. 3, pp. 36-52, 2015.
https://ieeexplore.ieee.org/document/7254318

B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foundationpose: Unified
6d pose estimation and tracking of novel objects,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024, pp. 17 868-17 879. https://arxiv.org/abs/2312.08344
Z. Zhong, Z. Li, and C. Chamzas, “Expansion-grr: Efficient generation
of smooth global redundancy resolution roadmaps,” in 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2024, pp. 8854-8860. https://ieeexplore.ieee.org/document/10801917

N. Kumar, T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-
Pérez, L. P. Kaelbling, and J. Barry, “Practice makes perfect:
Planning to learn skill parameter policies,” Planning, vol. 1, p. 2.
https://www.roboticsproceedings.org/rss20/p040.pdf

https://doi.org/10.1146/annurev-control-061623-094742
https://www.annualreviews.org/content/journals/10.1146/annurev-control-060117-104848
https://www.annualreviews.org/content/journals/10.1146/annurev-control-060117-104848
https://ieeexplore.ieee.org/document/9104757
https://ieeexplore.ieee.org/document/8593995
https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/1806.07572
https://arxiv.org/abs/2106.09675
https://doi.org/10.1177/0278364920913938
https://proceedings.neurips.cc/paper_files/paper/2016/file/c203d8a151612acf12457e4d67635a95-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c203d8a151612acf12457e4d67635a95-Paper.pdf
https://arxiv.org/abs/1703.02910
https://dl.acm.org/doi/abs/10.5555/3648699.3648863
https://www.sciencedirect.com/science/article/pii/S0957415821000659
https://www.sciencedirect.com/science/article/pii/S0957415821000659
https://doi.org/10.1177/02783649211004615
https://ieeexplore.ieee.org/abstract/document/10611488
https://ieeexplore.ieee.org/abstract/document/10611488
https://arxiv.org/abs/2502.08844
https://hacman-2023.github.io/
https://proceedings.mlr.press/v87/bauza18a.html
https://proceedings.mlr.press/v87/bauza18a.html
https://ieeexplore.ieee.org/document/10802843
https://arxiv.org/abs/2410.00261
https://ieeexplore.ieee.org/abstract/document/10161560
https://ieeexplore.ieee.org/abstract/document/587370
https://ompl.kavrakilab.org
https://dl.acm.org/doi/abs/10.5555/3600270.3601181
https://doi.org/10.1177/0278364915614386
https://ieeexplore.ieee.org/document/7254318
https://arxiv.org/abs/2312.08344
https://ieeexplore.ieee.org/document/10801917
https://www.roboticsproceedings.org/rss20/p040.pdf

	I Introduction
	II Related Work
	III Problem Statement
	IV Methodology
	IV-A Residual Physics
	IV-B Uncertainty Quantification
	IV-C Active Learning
	IV-D Active Planning

	V Experiments
	V-A Skill Learning
	V-B Kinodynamic Planning
	V-C Closed-loop Execution

	VI Conclusion
	References

